Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\). Giả sử \(M\left( {{x_0};\,{y_0}} \right) \in \left( C \right)\), \(\left( {{x_0} \ne 1} \right)\) suy ra tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là \(y = \frac{{ - 1}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{2{x_0} - 1}}{{{x_0} - 1}}\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} \frac = + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} \frac = - \infty \) nên đường thẳng \(x = 1\) là tiệm cận đứng của \(\left( C \right)\).
Vì \(\mathop {\lim }\limits_{x \to + \infty } \frac = 2;\,\,\mathop {\lim }\limits_{x \to - \infty } \frac = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).
Suy ra \(I\left( {1;\,\,2} \right)\).
Điểm \(A\left( {1;\,\frac{{2{x_0}}}{{{x_0} - 1}}} \right)\) là giao điểm của tiệm cận đứng và tiếp tuyến, điểm \(B\left( {2{x_0} - 1;\,2} \right)\) là giao điểm của tiệm cận ngang và tiếp tuyến.
Ta có chu vi của tam giác \(IAB\) bằng:
\(IA + IB + AB = \frac{2}{{\left| {{x_0} - 1} \right|}} + 2\left| {{x_0} - 1} \right| + \sqrt {4{{\left( {{x_0} - 1} \right)}^2} + \frac{4}{{{{\left( {{x_0} - 1} \right)}^2}}}} \).
Áp dụng bất đẳng thức AM-GM, ta có \(IA + IB + AB \ge 2\sqrt 4 + \sqrt {4 \cdot 2} = 4 + \sqrt 8 \).
Đẳng thức xảy ra khi \(\left| {{x_0} - 1} \right| = 1 \Leftrightarrow {x_0} = 0\) hoặc \({x_0} = 2\).
Vậy chu vi tam giác \(IAB\) đạt giá trị nhỏ nhất bằng \(4 + \sqrt 8 \) khi \(M\left( {0;1} \right)\) hoặc \(M\left( {2;3} \right)\).
Suy ra \(a = 4,b = 8\) nên \(a - b + 4 = 0\).
Đáp số: \(0\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |