Bài tập  /  Bài đang cần trả lời

Cho hàm số \(y = \frac\) có đồ thị là \(\left( C \right)\). Gọi \(I\) là giao điểm của hai đường tiệm cận của \(\left( C \right)\), \(M\) là một điểm bất kì trên \(\left( C \right)\) và tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt hai tiệm cận tại \(A,\,B\). Biết chu vi tam giác \(IAB\) có giá trị nhỏ nhất bằng \(a + \sqrt b \) với \(a,\,b \in \mathbb{N}\). Giá trị của biểu thức \(a - b + 4\) bằng bao nhiêu?

Cho hàm số \(y = \frac\) có đồ thị là \(\left( C \right)\). Gọi \(I\) là giao điểm của hai đường tiệm cận của \(\left( C \right)\), \(M\) là một điểm bất kì trên \(\left( C \right)\) và tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt hai tiệm cận tại \(A,\,B\). Biết chu vi tam giác \(IAB\) có giá trị nhỏ nhất bằng \(a + \sqrt b \) với \(a,\,b \in \mathbb{N}\). Giá trị của biểu thức \(a - b + 4\) bằng bao nhiêu?
1 Xem trả lời
Hỏi chi tiết
60
0
0
Tôi yêu Việt Nam
10/10 09:45:05

Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\). Giả sử \(M\left( {{x_0};\,{y_0}} \right) \in \left( C \right)\), \(\left( {{x_0} \ne 1} \right)\) suy ra tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là \(y = \frac{{ - 1}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{2{x_0} - 1}}{{{x_0} - 1}}\).

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} \frac =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} \frac =  - \infty \) nên đường thẳng \(x = 1\) là tiệm cận đứng của \(\left( C \right)\).

Vì \(\mathop {\lim }\limits_{x \to  + \infty } \frac = 2;\,\,\mathop {\lim }\limits_{x \to  - \infty } \frac = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).

Suy ra \(I\left( {1;\,\,2} \right)\).

Điểm \(A\left( {1;\,\frac{{2{x_0}}}{{{x_0} - 1}}} \right)\) là giao điểm của tiệm cận đứng và tiếp tuyến, điểm \(B\left( {2{x_0} - 1;\,2} \right)\) là giao điểm của tiệm cận ngang và tiếp tuyến.

Ta có chu vi của tam giác \(IAB\) bằng:

\(IA + IB + AB = \frac{2}{{\left| {{x_0} - 1} \right|}} + 2\left| {{x_0} - 1} \right| + \sqrt {4{{\left( {{x_0} - 1} \right)}^2} + \frac{4}{{{{\left( {{x_0} - 1} \right)}^2}}}} \).

Áp dụng bất đẳng thức AM-GM, ta có \(IA + IB + AB \ge 2\sqrt 4  + \sqrt {4 \cdot 2}  = 4 + \sqrt 8 \).

Đẳng thức xảy ra khi \(\left| {{x_0} - 1} \right| = 1 \Leftrightarrow {x_0} = 0\) hoặc \({x_0} = 2\).

Vậy chu vi tam giác \(IAB\) đạt giá trị nhỏ nhất bằng \(4 + \sqrt 8 \) khi \(M\left( {0;1} \right)\) hoặc \(M\left( {2;3} \right)\).

Suy ra \(a = 4,b = 8\) nên \(a - b + 4 = 0\).

Đáp số: \(0\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×