Tìm \( n \in \mathbb{Z} \)
----- Nội dung ảnh -----
1. Tính \( n \in \mathbb{Z} \):
a) \( 2n + 7 = n + 1 \)
b) \( 2n + 3 = 3n - 1 \)
c) \( n^2 - 4n + 5 = 0 \)
d) \( n^2 + 2n + 6 = n + 4 \)
e) \( n^3 - 2n^2 - 3n = n^2 + 1 \)
f) \( n^2 + 2n + 10 = 13 \)
g) \( n^2 + n + 2 = n^2 + 2n + 1 \)
h) \( 4n^3 - 3n^2 - 2n + 1 = n^4 - 1 \)
i) \( 3^n - 1 = 8 \)
j) \( \frac{n^5 - n^3 + n}{120} - \frac{n}{24} + \frac{n}{20} = 0 \)