Cho tứ diện đều \(ABCD\) cạnh \(a\). \(E\) là điểm trên đoạn \(CD\) sao cho \(ED = 2CE\).
a) Có \[6\] vectơ (khác vectơ \[\overrightarrow 0 \]) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện.
b) Góc giữa hai vectơ \[\overrightarrow {AB\,} \] và \[\overrightarrow {BC\,} \] bằng \[60^\circ \].
c) Nếu \[\overrightarrow {BE\,} = m\overrightarrow {BA\,} + n\overrightarrow {BC\,} + p\overrightarrow {BD\,} \] thì \[m + n + p = \frac{2}{3}\].
d) Tích vô hướng \(\overrightarrow {AD} .\overrightarrow {BE} = \frac{{{a^2}}}{6}\).