Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Kẻ các đường cao AF, CG của tam giác ABC (G thuộc AB, F thuộc BC). Đường kính AD của đường tròn tâm O cắt BC tại E.
1. Chứng minh tứ giác AGFC nội tiếp một đường tròn.
2. Chứng minh EA.ED = EB.EC
3. Gọi K và I lần lượt là hình chiếu vuông góc của F trên các cạnh CG và AC. Đường thẳng IK cắt cạnh AB tại H . Chứng minh <!--[if gte vml 1]> <!--[endif]--><!--[if gte mso 9]--><xml> </xml><![endif]-->. HF vuông AB