Hai người \(A\), \(B\) đang chạy xe ngược chiều nhau thì xảy ra va chạm, hai xe tiếp tục di chuyển theo chiều của mình thêm một quãng đường nữa thì dừng hẳn. Biết rằng sau khi va chạm, một người di chuyển tiếp với vận tốc \({v_1}\left( t \right) = 6 - 3t\) \[\left( {{\rm{m/s}}} \right)\], người còn lại di chuyển với vận tốc \({v_2}\left( t \right) = 12 - 4t\) \[\left( {{\rm{m/s}}} \right)\].
a) Quãng đường người thứ nhất di chuyển sau khi va chạm được biểu diễn bởi hàm số\({s_1}\left( t \right) = 6t - \frac{{3{t^2}}}{2} + \,\,C\,\,(\;{\rm{m}})\).
b) Quãng đường người thứ hai di chuyển sau khi va chạm được biểu diễn bởi hàm số\({s_2}\left( t \right) = 12t - 2{t^2} + \,\,C'\,\,(\;{\rm{m}})\).
c) Quãng đường người thứ nhất di chuyển sau khi va chạm đến khi dừng hẳn là \(18\,\,(\;{\rm{m}})\).
d) Khoảng cách hai xe khi đã dừng hẳn là \(12\,\,(\;{\rm{m}})\).