Ki777 | Chat Online
15/08/2017 09:47:17

Cho tam giác ABC, B' là điểm đối xứng của B qua C. E, F là 2 điểm sao cho 2 vectơ AE = vectơ AC, 3 vectơ AF = vectơ AB. a) Tính vectơ AB' theo vectơ AB và vectơ AC. b) Chứng minh ba điểm B', E, F thẳng hàng


​*Bài 1: Cho ΔABC, B' là điểm đối xứng của B qua C. E,F là 2 điểm sao cho 2.vectơ AE = vectơ AC, 3.vectơ AF = vectơ AB
a) Tính vectơ AB' theo vectơ AB và vectơ AC         b) C/minh: B', E, F thẳng hàng
*Bài 2: Cho ΔABC và 2 điểm M,N thỏa vectơ NC = 2.vectơ AN, vectơ AM = 1/2 vectơ BC
C/minh: B,M,N thẳng hàng
*Bài 3: Cho ΔABC. I,J là 2 điểm thỏa vectơ IA = 2.vectơ IB, 3.vectơ JA + 2.vectơ JC = vectơ 0 ( bằng 0 )
a) tính vectơ IJ theo vectơ AB, vectơ AC                b) C/minh: đường thẳng IJ đi qua trọng tâm G của tam giác ABC
*Bài 4: Cho ΔABC nội tiếp trong đường tròn tâm O. G,H lần lượt là trọng tâm và trực tâm của ΔABC, M là trung điểm của BC
a) So sánh vectơ HA và vectoMO
b) C/minh: vectơ HA + vectơ HB + vectơ HC = 2.vectơ HO và vectơ OA + vectơ OB + vectơ OC = vectơ OH
c) C/minh: vectơ OA + vectơ OB + vectơ OC = 3.vectơ OG và O,G,H thẳng hàng
*Bài 5: Cho ΔABC. M, N, P thỏa vectơ MB = 2.vectơ MC, vectơ NA = -2.vectơ NC, vectơ PA +vectơ PB = vectơ 0
a) tính vectơ PM, vectơ PN theo vectơ AB, vectơ AC        b)C/m: M,N,P thẳng hàng
*Bài 6: Cho ΔABC. I,J,K thỏa 2.vectơ IB + 3.vectơ IC = vectơ 0
2vectơ JC + 3.vectơ JA = vectơ 0
2.vectơ KA + 3.vectơ KB = vectơ 0
C/minh: ΔABC và ΔIJK có cùng trọng tâm
*Bài 7: Cho ΔABC, A' là điểm đối xứng của B qua A. B' là điểm đối xứng của C qua B, C' là điểm đối xứng của A qua C
C/minh: ΔABC và ΔA'B'C' có cùng trọng tâm
*Bài 8: Cho ΔABC. N,M,L thỏa vectơ AN = 2.vectơ NC, 2.vectơ BM = vectơ MC, vectơ AL = x.vectơ AB
Tìm x để M,N,L thẳng hàng
Bài tập đã có 3 trả lời, xem 3 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn