TiếnnĐạt Nguyễn | Chat Online
31/05/2020 01:16:39

Cho phương trình: x^2 - mx + 2m - 3 = 0. Giải phương trình với m = - 5. Tìm m để phương trình có nghiệm kép


Cho phương trình: x2 - mx + 2m - 3 = 0 a) Giải phương trình với m = - 5 b) Tìm m để phương trình có nghiệm kép c) Tìm m để phương trình có hai nghiệm trái dấu d)Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào m e) Tìm m để phương trình có hai nghiệm phân biệt                                                                                                                                 Bài tập 3: Cho phương trình bậc hai(m - 2)x2 - 2(m + 2)x + 2(m - 1) = 0 a) Giải phương trình với m = 3 b) Tìm m để phương trình có một nghiệm x = - 2 c) Tìm m để phương trình có nghiệm kép d) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m e) Tìm m để phương trình có hai nghiệm phân biệt f) Khi phương trình có một nghiệm x = -1 tìm giá trị của m và tìm nghiệm còn lại                                                                                                                                                                      Bài tập 4Cho phương trình: x2 - 2(m- 1)x + m2 - 3m = 0 a) Giải phương trình với m = - 2 b) Tìm m để phương trình có một nghiệm x = - 2. Tìm nghiệm còn lại c) Tìm m để phương trình có hai nghiệm phân biệt d) Tìm m để phương trình có hai nghiệm x1 và x2 thảo mãn: x12 + x22 = 8 e) Tìm giá trị nhỏ nhất của A = x12 + x22                                                                    Bài tập 5: Cho phương trình: mx2 - (m + 3)x + 2m + 1 = 0 a) Tìm m để phương trình có nghiệm kép b) Tìm m để phương trình có hai nghiệm phân biệt c) Tìm m để phương trình có hiệu hai nghiệm bằng 2 d) Tìm hệ thức liên hệ giữa x1và x2 không phụ thuộc m                                                                                                                                                                    Bài tập 6: Cho phương trình: x2 - (2a- 1)x - 4a - 3 = 0 a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của a b) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào a c) Tìm giá trị nhỏ nhật của biểu thức A = x12 + x22                  Bài tập 7: Cho phương trình: x2 - (2m- 6)x + m -13 = 0 a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt b) Tìm giá trị nhỏ nhất của biểu thức A = x1. x2 - x12 - x22                                                                                                           Bài tập 8: Cho phương trình: x2 - 2(m+4)x + m2 - 8 = 0 a) Tìm m để phương trình có hai nghiệm phân biệt b) Tìm m để A = x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất c) Tìm m để B = x1 + x2 - 3x1x2 đạt giá trị lớn nhất d) Tìm m để C = x12 + x22 - x1x2 Bài tập 9: Cho phương trình: ( m - 1) x2 + 2mx + m + 1 = 0 a) Giải phương trình với m = 4 b) Tìm m để phương trình có hai nghiệm trái dấu c) Tìm m để phương trình có hai nghiệm x1 và x2 thoả mãn: A = x12 x2 + x22x1 d) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m                                                                                                                                           Bài tập 10: Cho phương trình mx2 - 2(m + 1)x + (m - 4) = 0 a) Tìm m để phương trình có nghiệm. b) Tìm m để phương trình có 2 nghiệm trái dấu. Khi đó trong hai nghiệm, nghiệm nào có giá trị tuyệt đối lớn hơn? c) Xác định m để các nghiệm x1; x2 của phương trình thoả mãn: x1 + 4x2 = 3. d) Tìm một hệ thức giữa x1, x2 mà không phụ thuộc vào m.                                Bài tập 11:a) Với giá trị nào m thì hai phương trình sau có ít nhật một nghiệm chung. Tìm nghiệm chung đó? x2 - (m + 4)x + m + 5 = 0(1) x2 - (m + 2)x + m + 1 = 0 (2) b) Tìm giá trị của m để nghiệm của phương trình (1) là nghiệm của phương trình (2) và ngược lại. Bài tập 12:Gọi x1; x2 là nghiệm của phương trình:x2 + 2(m + 1)x + m2 + 4m + 3 = 0 Tìm GTLN biểu thức:A =½x1x2 - 2x1 - 2x2½

Bài tập đã có 7 trả lời, xem 7 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn