Bài tập  /  Bài đang cần trả lời

Cho phương trình: x^2 - mx + 2m - 3 = 0. Giải phương trình với m = - 5. Tìm m để phương trình có nghiệm kép

Cho phương trình: x2 - mx + 2m - 3 = 0 a) Giải phương trình với m = - 5 b) Tìm m để phương trình có nghiệm kép c) Tìm m để phương trình có hai nghiệm trái dấu d)Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào m e) Tìm m để phương trình có hai nghiệm phân biệt                                                                                                                                 Bài tập 3: Cho phương trình bậc hai(m - 2)x2 - 2(m + 2)x + 2(m - 1) = 0 a) Giải phương trình với m = 3 b) Tìm m để phương trình có một nghiệm x = - 2 c) Tìm m để phương trình có nghiệm kép d) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m e) Tìm m để phương trình có hai nghiệm phân biệt f) Khi phương trình có một nghiệm x = -1 tìm giá trị của m và tìm nghiệm còn lại                                                                                                                                                                      Bài tập 4Cho phương trình: x2 - 2(m- 1)x + m2 - 3m = 0 a) Giải phương trình với m = - 2 b) Tìm m để phương trình có một nghiệm x = - 2. Tìm nghiệm còn lại c) Tìm m để phương trình có hai nghiệm phân biệt d) Tìm m để phương trình có hai nghiệm x1 và x2 thảo mãn: x12 + x22 = 8 e) Tìm giá trị nhỏ nhất của A = x12 + x22                                                                    Bài tập 5: Cho phương trình: mx2 - (m + 3)x + 2m + 1 = 0 a) Tìm m để phương trình có nghiệm kép b) Tìm m để phương trình có hai nghiệm phân biệt c) Tìm m để phương trình có hiệu hai nghiệm bằng 2 d) Tìm hệ thức liên hệ giữa x1và x2 không phụ thuộc m                                                                                                                                                                    Bài tập 6: Cho phương trình: x2 - (2a- 1)x - 4a - 3 = 0 a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của a b) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào a c) Tìm giá trị nhỏ nhật của biểu thức A = x12 + x22                  Bài tập 7: Cho phương trình: x2 - (2m- 6)x + m -13 = 0 a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt b) Tìm giá trị nhỏ nhất của biểu thức A = x1. x2 - x12 - x22                                                                                                           Bài tập 8: Cho phương trình: x2 - 2(m+4)x + m2 - 8 = 0 a) Tìm m để phương trình có hai nghiệm phân biệt b) Tìm m để A = x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất c) Tìm m để B = x1 + x2 - 3x1x2 đạt giá trị lớn nhất d) Tìm m để C = x12 + x22 - x1x2 Bài tập 9: Cho phương trình: ( m - 1) x2 + 2mx + m + 1 = 0 a) Giải phương trình với m = 4 b) Tìm m để phương trình có hai nghiệm trái dấu c) Tìm m để phương trình có hai nghiệm x1 và x2 thoả mãn: A = x12 x2 + x22x1 d) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m                                                                                                                                           Bài tập 10: Cho phương trình mx2 - 2(m + 1)x + (m - 4) = 0 a) Tìm m để phương trình có nghiệm. b) Tìm m để phương trình có 2 nghiệm trái dấu. Khi đó trong hai nghiệm, nghiệm nào có giá trị tuyệt đối lớn hơn? c) Xác định m để các nghiệm x1; x2 của phương trình thoả mãn: x1 + 4x2 = 3. d) Tìm một hệ thức giữa x1, x2 mà không phụ thuộc vào m.                                Bài tập 11:a) Với giá trị nào m thì hai phương trình sau có ít nhật một nghiệm chung. Tìm nghiệm chung đó? x2 - (m + 4)x + m + 5 = 0(1) x2 - (m + 2)x + m + 1 = 0 (2) b) Tìm giá trị của m để nghiệm của phương trình (1) là nghiệm của phương trình (2) và ngược lại. Bài tập 12:Gọi x1; x2 là nghiệm của phương trình:x2 + 2(m + 1)x + m2 + 4m + 3 = 0 Tìm GTLN biểu thức:A =½x1x2 - 2x1 - 2x2½

7 Xem trả lời
Hỏi chi tiết
5.263
1
3
...
31/05/2020 03:52:26
khá là hay 
 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
3
1
Hảo Hannah
31/05/2020 06:18:17
3
0
1
0
3
0
3
0
2
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×