Thảo Nguyên | Chat Online
21/06/2020 17:52:45

Chứng minh bốn điểm A, E, N, C cùng thuộc một đường tròn và EN song song với BD


Cho đường tròn (O) và một dây BC cố định khác với đường kính. Lấy A là điểm bất kì trên cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Kẻ các đường cao AE, CF của tam giác ABC và đường kính AD của đường tròn (O). Gọi N là hình chiếu vuông góc của C trên AD.

1) Chứng minh bốn điểm A, E, N, C cùng thuộc một đường tròn và EN song song với BD.

2) Tia phân giác của góc BAC cắt BC tại P và cắt đường tròn (O) tại điểm thứ hai Q. Chứng minh AB.AC = AE.AD = AP.AQ.

3) C/m: Khi A di động trên cung BC lớn và thỏa mãn điều kiện của đề bài, đường thẳng NF luôn đi qua 1 điểm cố định.

Bài tập đã có 2 trả lời, xem 2 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn