Cho đường tròn (O) và một dây BC cố định khác với đường kính. Lấy A là điểm bất kì trên cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Kẻ các đường cao AE, CF của tam giác ABC và đường kính AD của đường tròn (O). Gọi N là hình chiếu vuông góc của C trên AD.
1) Chứng minh bốn điểm A, E, N, C cùng thuộc một đường tròn và EN song song với BD.
2) Tia phân giác của góc BAC cắt BC tại P và cắt đường tròn (O) tại điểm thứ hai Q. Chứng minh AB.AC = AE.AD = AP.AQ.
3) C/m: Khi A di động trên cung BC lớn và thỏa mãn điều kiện của đề bài, đường thẳng NF luôn đi qua 1 điểm cố định.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |