Cho (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt (O) ở C. Gọi E là giao điểm của AC và BM. Chứng minh NE vuông góc AB
1.cho (O) đường kính AB điểm M thuộc đường tròn. vẽ điểm N đối xứng với A qua M. BN cắt (O) ở C. gọi E là giao điểm của AC và BM
a,NE vuông góc vs AB
b, gọi F là đdiểm đối xứng của E qua M.CMR FA là tiếp tuyến của (O)
c,FN là tiếp tuyến của (B;BA)
d,BM.BF=BF2 - FN2
2,cho nửa đường tròn tâm (O) đường kính AB, M là một điểm tùy ý trên nửa đường tròn. kẻ hai tiếp tuyến Ax và By vs nửa đường tròn. qua M kẻ tiếp tuyến thứ 3 lần lượt cắt Ax và By tại C và D
a,CD=AC + BD và góc COD=90 độ
b,AC . BD =R2
c, OC cắt AM tại E, OD cắt BM tại F.cmr EF=R
d,tìm vị trí của M để CD có độ dài nhỏ nhất
3,cho (O,R) đường kính AB. qua A và B lần lượt vẽ 2 tiếp tuyến (d) và (d') với (O). một đường thẳng qua O cắt (d) ở M và cắt (d') ở P. từ O vẽ một tia vuông góc vs MP và cắt (d') ở N
a,OM=OP và tam giác MNP cân
b,ha OI vuông góc vs MN, cm OI=Rvaf M là tiếp tuyến của (O)
c,AM . BN =R2
d,tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất vẽ hình minh họa