Cho nửa đường tròn (O;R), có đường kính AB. Kẻ hai tia Ax và By vuông góc với AB (Ax, By và nửa đường tròn (O) thuộc cùng một nửa mặt phẳng bờ chứa AB)
Cho nửa đường tròn (O;R), có đường kính AB. Kẻ hai tia Ax và By vuông góc với AB (Ax, By và nửa đường tròn (O) thuộc cùng một nửa mặt phẳng bờ chứa AB). Trên nửa đường tròn lấy điểm M (M khác A và B), qua M kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự tại C và D. Chứng minh:
a)AC + BD = CD
b) (góc) COD = AC + BD