Cho điểm M(x; y) nằm trên hypebol (H):x2a2−y2b2=1.
a) Chứng minh rằng F1M2 – F2M2 = 4cx.
b) Giả sử điểm M(x; y) thuộc nhánh đi qua A1(–a; 0) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF2 – MF1 = 2a đã biết để chứng minh MF2+MF1=−2cxa. Từ đó, chứng minh các công thức: MF1=−a−cax; MF2=a−cax.
b) Giả sử điểm M(x; y) thuộc nhánh đi qua A2(a; 0) (Hình 5 b). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF1 – MF2 = 2a đã biết để chứng minh MF2+MF1=2cxa. Từ đó, chứng minh các công thức: MF1=a+cax; MF2=−a+cax.