Ở Phi-líp-pin, thắng lợi của cuộc cách mạng năm 1896 - 1898 đã lật đổ sự thống trị của
Phạm Văn Bắc | Chat Online | |
07/09 17:33:11 (Lịch sử - Lớp 8) |
7 lượt xem
Ở Phi-líp-pin, thắng lợi của cuộc cách mạng năm 1896 - 1898 đã lật đổ sự thống trị của
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. thực dân Anh. 0 % | 0 phiếu |
B. thực dân Pháp. 0 % | 0 phiếu |
C. thực dân Tây Ban Nha. 0 % | 0 phiếu |
D. thực dân Hà Lan. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Sau khi thoát khỏi ách cai trị của thực dân Tây Ban Nha, Phi-líp-pin bị đế quốc nào thôn tính? (Lịch sử - Lớp 8)
- Người đại diện cho xu thế ôn hòa trong phong trào giải phóng dân tộc ở Phi-líp-pin là (Lịch sử - Lớp 8)
- Ở Campuchia, trong những năm 1864 - 1865 đã diễn ra cuộc đấu tranh nào dưới đây? (Lịch sử - Lớp 8)
- Ở Phi-líp-pin, trong những năm 1896 - 1897 đã diễn ra cuộc đấu tranh nào dưới đây? (Lịch sử - Lớp 8)
- Ở In-đô-nê-xi-a, cuộc khởi nghĩa nông dân đảo Gia-va do Sa-min lãnh đạo diễn ra vào thời gian nào? (Lịch sử - Lớp 8)
Trắc nghiệm mới nhất
- Phần I. Đọc - hiểu (6.0 điểm) Đọc kĩ đoạn trích sau và trả lời các câu hỏi bên dưới: “Bơi càng lên mặt ao thấy càng nóng, cá Chuối mẹ bơi mãi, cố tìm hướng vào bờ. Mặt ao sủi bọt, nổi lên từng đám rêu. Rất khó nhận ra phương hướng. Chuối mẹ phải ... (Ngữ văn - Lớp 6)
- Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó? (Toán học - Lớp 9)
- Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu? (Toán học - Lớp 9)
- III. Vận dụng Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là (Toán học - Lớp 9)
- Cho tam giác \[ABC\] nhọn nội tiếp \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng? (Toán học - Lớp 9)
- Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là (Toán học - Lớp 9)
- Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là (Toán học - Lớp 9)
- Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng (Toán học - Lớp 9)
- Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng (Toán học - Lớp 9)