Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} + {x^2} - mx - 1\) có đúng một điểm cực trị thuộc khoảng \(\left( {0;4} \right)\)?

CenaZero♡ | Chat Online
13/12 11:22:13 (Toán học - Lớp 12)
18 lượt xem

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} + {x^2} - mx - 1\) có đúng một điểm cực trị thuộc khoảng \(\left( {0;4} \right)\)?

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \(23\).
2 phiếu (100%)
B. \(8\).
0 %
0 phiếu
C. \(9\).
0 %
0 phiếu
D. Vô số.
0 %
0 phiếu
Tổng cộng:
2 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×