Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y - z - 1 = 0 và điểm A(1;0;0) ∈ (P). Đường thẳng ∆ đi qua A nằm trong mặt phẳng (P) và tạo với trục Oz một góc nhỏ nhất. Gọi M(x0;y0;z0) là giao điểm của đường thẳng ∆ với mặt phẳng (Q): 2x + y - 2z + 1 =0. Tổng bằng S = x0 + y0+ z0

Đặng Bảo Trâm | Chat Online
29/08 21:05:23 (Toán học - Lớp 12)
11 lượt xem

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y - z - 1 = 0 và điểm A(1;0;0) ∈ (P). Đường thẳng ∆ đi qua A nằm trong mặt phẳng (P) và tạo với trục Oz một góc nhỏ nhất. Gọi M(x0;y0;z0) là giao điểm của đường thẳng ∆ với mặt phẳng (Q): 2x + y - 2z + 1 =0. Tổng bằng S = x0 + y0+ z0

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. -5
0 %
0 phiếu
B. 12
0 %
0 phiếu
C. -2
0 %
0 phiếu
D. 13
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×