Sao Bắc đẩu nằm trong chòm sao dưới đây?
Phạm Kim Chi | Chat Online | |
17/07/2019 07:29:57 |
355 lượt xem
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. Phi mã 24 % | 6 phiếu |
B. Tiểu hùng tinh 44 % | 11 phiếu |
C. Thiên cầm 20 % | 5 phiếu |
D. Hiệp sĩ (Lạp Hộ) 12 % | 3 phiếu |
Tổng cộng: | 25 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Trưởng phái đoàn ta tham dự Hội nghị Genève về lập lại hoà bình cho Đông Dương là ai?
- Noel đầu tiên được tổ chức năm nào?
- Bộ máy Nhà nước xã hội chủ nghĩa Việt Nam gồm những hệ thống cơ quan nào?
- Linh vật của Sea games năm 1993 được tổ chức tại Singapore là con vật gì?
- Chính phủ có thẩm quyền ban hành loại văn bản quy phạm pháp luật?
- Bộ máy Nhà nước CHXHCN Việt Nam hiện nay gồm có những cơ quan?
- Ủy ban nhân dân là cơ quan?
- Muốn khởi kiện vụ án dân sự thì phải?
- Các tổ chức nào sau đây có thể tham gia tố tụng hình sự?
- Bị can là?
Trắc nghiệm mới nhất
- Phần I. Đọc - hiểu (6.0 điểm) Đọc kĩ đoạn trích sau và trả lời các câu hỏi bên dưới: “Bơi càng lên mặt ao thấy càng nóng, cá Chuối mẹ bơi mãi, cố tìm hướng vào bờ. Mặt ao sủi bọt, nổi lên từng đám rêu. Rất khó nhận ra phương hướng. Chuối mẹ phải ... (Ngữ văn - Lớp 6)
- Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó? (Toán học - Lớp 9)
- Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu? (Toán học - Lớp 9)
- III. Vận dụng Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là (Toán học - Lớp 9)
- Cho tam giác \[ABC\] nhọn nội tiếp \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng? (Toán học - Lớp 9)
- Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là (Toán học - Lớp 9)
- Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là (Toán học - Lớp 9)
- Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng (Toán học - Lớp 9)
- Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng (Toán học - Lớp 9)