Trường THPT Chuyên Nguyễn Đình Chiểu thuộc tỉnh?
Vũ Hoàng Nam | Chat Online | |
03/01/2020 17:47:28 |
174 lượt xem
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. Đồng Nai 22.22 % | 2 phiếu |
B. Đồng Tháp 33.33 % | 3 phiếu |
C. Lâm Đồng 11.11 % | 1 phiếu |
D. Hà Nội 33.33 % | 3 phiếu |
Tổng cộng: | 9 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Trường THPT Chuyên Nguyễn Thị Minh Khai thuộc tỉnh?
- Trường THPT Chuyên Lương Văn Chánh thuộc tỉnh?
- Trường THPT Chuyên Lương Văn Tụy thuộc tỉnh?
- Trường THPT Chuyên Hoàng Văn Thụ thuộc tỉnh?
- Trường THPT Chuyên Nguyễn Quang Diêu thuộc tỉnh?
- THPT Chuyên Nguyễn Chí Thanh thuộc tỉnh?
- THPT Chuyên Bình Long thuộc tỉnh?
- Món Berner platte là ẩm thực của nước nào?
- Món Zurchergeschnetzeltes là ẩm thực của nước nào?
- Món Cơm nấu nghệ Saffron risotto là ẩm thực của nước nào?
Trắc nghiệm mới nhất
- Phần I. Đọc - hiểu (6.0 điểm) Đọc kĩ đoạn trích sau và trả lời các câu hỏi bên dưới: “Bơi càng lên mặt ao thấy càng nóng, cá Chuối mẹ bơi mãi, cố tìm hướng vào bờ. Mặt ao sủi bọt, nổi lên từng đám rêu. Rất khó nhận ra phương hướng. Chuối mẹ phải ... (Ngữ văn - Lớp 6)
- Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó? (Toán học - Lớp 9)
- Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu? (Toán học - Lớp 9)
- III. Vận dụng Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là (Toán học - Lớp 9)
- Cho tam giác \[ABC\] nhọn nội tiếp \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng? (Toán học - Lớp 9)
- Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là (Toán học - Lớp 9)
- Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là (Toán học - Lớp 9)
- Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng (Toán học - Lớp 9)
- Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng (Toán học - Lớp 9)