Một sợi dây đàn hồi dài 1,2m được treo lơ lửng trên một cần rung. Cần rung có thể dao động theo phương ngang với tần số thay đổi được từ 50Hz đến 75Hz. Tốc độ truyền sóng trên dây là 6m/s. Xem đầu nối với cần rung là nút sóng khi có sóng dừng trên dây. Trong quá trình thay đổi tần số rung, số lần tạo ra sóng dừng trên dây là
Nguyễn Thị Sen | Chat Online | |
05/09 17:15:14 (Tổng hợp - Lớp 12) |
6 lượt xem
Một sợi dây đàn hồi dài 1,2m được treo lơ lửng trên một cần rung. Cần rung có thể dao động theo phương ngang với tần số thay đổi được từ 50Hz đến 75Hz. Tốc độ truyền sóng trên dây là 6m/s. Xem đầu nối với cần rung là nút sóng khi có sóng dừng trên dây. Trong quá trình thay đổi tần số rung, số lần tạo ra sóng dừng trên dây là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 11. 0 % | 0 phiếu |
B. 13. 0 % | 0 phiếu |
C. 12. 0 % | 0 phiếu |
D. 10. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
Trắc nghiệm mới nhất
- Em hãy chọn đáp án đúng nhất Hỗn số chỉ số phần đã tô màu trong hình vẽ sau là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số Chín và năm phần mười hai được viết là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{3}}\frac{{\bf{1}}}{{\bf{5}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{5}}\frac{{\bf{7}}}{{\bf{9}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Số thích hợp điền vào ô trống là: \[\frac{1}{2} + \frac{2}{3} < \frac{2} < \frac{4} - \frac{1}{6}\] (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của biểu thức \[\frac{{\bf{9}}}{{\bf{4}}}{\bf{ - }}\left( {\frac{{\bf{2}}}{{\bf{3}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{6}}}} \right)\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{8}}}{{\bf{3}}}{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{6}}}{{\bf{5}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{9}}}\] là: (Toán học - Lớp 5)
- Kết quả của phép tính \(\frac{{{\bf{12}}}}{{\bf{7}}}{\bf{:6}}\) là: (Toán học - Lớp 5)
- Kết quả của phép tính \({\bf{9 \times }}\frac{{\bf{7}}}{{{\bf{18}}}}\) là: (Toán học - Lớp 5)