Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: \[{x^4} - 10{x^2} + 2{m^2} + 7m = 0\], tính tổng lập phương của hai giá trị đó.Đặt\[t = {x^2}\,\,\left( {t \ge 0} \right)\] khi đó phương trình trở thành\[{t^2} - 10t + 2{m^2} + 7m = 0\](*)Phương trình đã cho có 4 nghiệm dương phân biệt\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime >0}\\{S >0}\\{P >0}\end{array}} \right. \Leftrightarrow \left\{ ...

Trần Đan Phương | Chat Online
05/09 23:23:43 (Tổng hợp - Lớp 12)
6 lượt xem

Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: \[{x^4} - 10{x^2} + 2{m^2} + 7m = 0\], tính tổng lập phương của hai giá trị đó.

Đặt\[t = {x^2}\,\,\left( {t \ge 0} \right)\] khi đó phương trình trở thành\[{t^2} - 10t + 2{m^2} + 7m = 0\](*)

Phương trình đã cho có 4 nghiệm dương phân biệt

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime >0}\\{S >0}\\{P >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{25 - 2{m^2} - 7m >0}\\{10 >0}\\{2{m^2} + 7m >0}\end{array}} \right. \Leftrightarrow 0 < 2{m^2} + 7m < 25\)

Với điều kiện trên thì (*) có 2 nghiệm phân biệt dương là\[{t_1},{t_2}\,\,({t_1} < {t_2})\] Do đó phương trình ban đầu có 4 nghiệm phân biệt được sắp xếp theo thứ tự tăng dần như sau\[ - \sqrt , - \sqrt ,\sqrt ,\sqrt \]

Bốn nghiệm này lập thành cấp số cộng thì

\[ - \sqrt + \sqrt = 2\sqrt \Leftrightarrow 3\sqrt = \sqrt \Leftrightarrow 9{t_1} = {t_2}\]

Mà theo định lí Vi-et ta có\[{t_1} + {t_2} = 10 \Leftrightarrow 9{t_2} + {t_2} = 10 \Leftrightarrow {t_2} = 1 \Rightarrow {t_1} = 9\]

Lại có\[{t_1}{t_2} = 2{m^2} + 7m = 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = - \frac{9}{2}}\end{array}} \right.(tm)\]

Do đó\[{1^3} + {\left( { - \frac{9}{2}} \right)^3} = - \frac{8}\]

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \[ - \frac{8}\]
0 %
0 phiếu
B. \[\frac{8}\]
0 %
0 phiếu
C. \[ - \frac{8}\]
0 %
0 phiếu
D. \[\frac{8}\]Trả lời:
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Trắc nghiệm mới nhất

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư