Hàm số \(y = {x^3} - 3x\) có giá trị cực đại bằng
Phạm Văn Phú | Chat Online | |
07/09 11:38:34 (Toán học - Lớp 12) |
7 lượt xem
Hàm số \(y = {x^3} - 3x\) có giá trị cực đại bằng
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 2 0 % | 0 phiếu |
B. –2 0 % | 0 phiếu |
C. 1 0 % | 0 phiếu |
D. – 1 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\) (Toán học - Lớp 12)
- Một hình đa diện có ít nhất bao nhiêu đỉnh? (Toán học - Lớp 12)
- Số giao điểm của đồ thị hàm số \(y = \left| {x - 1} \right|\left( {\frac{1}{3}{x^2} - 2\left| x \right| + 3} \right)\) với trục hoành là (Toán học - Lớp 12)
- Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng? (Toán học - Lớp 12)
- Tập nghiệm S của bất phương trình \({\log _{\frac{1}{2}}}\left( {3x - 2} \right) > {\log _{\frac{1}{2}}}\left( {4 - x} \right)\) là (Toán học - Lớp 12)
- Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng? (Toán học - Lớp 12)
- Bất phương trình \({\left( {\frac{e}{2}} \right)^{x - 1}} \le {\left( {\frac{e}{2}} \right)^{2x + 3}}\) có nghiệm là (Toán học - Lớp 12)
- Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng: (Toán học - Lớp 12)
- Cho \(P = \sqrt[3]{a}.{a^{\frac{1}{3}}},\,\,a > 0\). Khẳng định nào sau đây đúng? (Toán học - Lớp 12)
- Đồ thị hàm số \(y = \frac}\) có bao nhiêu tiệm cận? (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)