Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,\,\,AD = \sqrt 2 a\), góc giữa hai mặt phẳng (SAC) và (ABCD) bằng \({60^0}\). Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.HAC.
Phạm Minh Trí | Chat Online | |
07/09/2024 12:23:52 (Toán học - Lớp 12) |
7 lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,\,\,AD = \sqrt 2 a\), góc giữa hai mặt phẳng (SAC) và (ABCD) bằng \({60^0}\). Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.HAC.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \(\frac{{9\sqrt 2 a}}{8}\) 0 % | 0 phiếu |
B. \(\frac{{\sqrt {62} a}}\) 0 % | 0 phiếu |
C. \(\frac{{\sqrt {62} a}}{8}\) 0 % | 0 phiếu |
D. \(\frac{{\sqrt {31} a}}\) 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình chóp S.ABCD có đáy là hình vuông, hình chiếu của S lên (ABCD) là điểm H thuộc cạnh AB thỏa mãn HB = 2HA, góc giữa SC và (ABCD) bằng \({60^0}\). Biết rằng khoảng cách từ A đến (SCD) bằng \(\sqrt {26} \). Thể tích V của khối chóp S.ABCD là (Toán học - Lớp 12)
- Cho hàm số liên tục trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau? (1) Hàm số đạt cực trị tại điểm \({x_0}\) khi và chỉ khi \(f'\left( \right) = 0\). (2) Nếu hàm ... (Toán học - Lớp 12)
- Cho hình trụ có bán kính đáy bằng r, chiều cao bằng h. Khẳng định nào sai? (Toán học - Lớp 12)
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x - 4} \right)^2}\). Khi đó số cực trị của hàm số \(y = f\left( {{x^2}} \right)\) là (Toán học - Lớp 12)
- Nguyên hàm của \(f\left( x \right) = x\cos \,x\) là (Toán học - Lớp 12)
- Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là (Toán học - Lớp 12)
- Cho hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) với \(a > 0,\,\,c > 2017,\,\,\,a + b + c < 2017\). Số cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) là (Toán học - Lớp 12)
- Tìm tất cả các giá trị của tham số thực m để hàm số \(y = - {x^3} - 2{x^2} + mx + 1\) đạt cực tiểu tại điểm \(x = - 1\) (Toán học - Lớp 12)
- Cho hàm số \(f\left( x \right) = \frac{1}\). Gọi \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\). Khẳng định nào sau là sai? (Toán học - Lớp 12)
- Giá trị của tham số m để phương trình \({4^x} - m{.2^{x + 1}} + 2m = 0\) có 2 nghiệm \({x_1},\,{x_2}\) thỏa mãn \({x_1} + {x_2} = 3\) là (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)