Tìm số nghiệm nguyên của bất phương trình \({\left( {\sqrt 3 - \sqrt 2 } \right)^{{x^2} + 1}} \ge {\left( {\sqrt 3 - \sqrt 2 } \right)^{3x - 1}}\)
Nguyễn Thị Nhài | Chat Online | |
07/09/2024 12:47:22 (Toán học - Lớp 12) |
10 lượt xem
Tìm số nghiệm nguyên của bất phương trình \({\left( {\sqrt 3 - \sqrt 2 } \right)^{{x^2} + 1}} \ge {\left( {\sqrt 3 - \sqrt 2 } \right)^{3x - 1}}\)
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 3 0 % | 0 phiếu |
B. 2 0 % | 0 phiếu |
C. 1 0 % | 0 phiếu |
D. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Hình bát diện đều có bao nhiêu mặt phẳng đối xứng? (Toán học - Lớp 12)
- Tìm khẳng định sai trong các khẳng định sau: (Toán học - Lớp 12)
- Khẳng định nào dưới đây về hàm số \(y = - {x^4} - 3{x^2} + 2\) là đúng? (Toán học - Lớp 12)
- Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, \(AB = a,\,\,BC = a\sqrt 2 \), mặt \(\left( {A'BC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc \({30^0}\). Tính thể tích V của khối lăng trụ đó? (Toán học - Lớp 12)
- Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Thể tích V của hình chóp S.ABCD. (Toán học - Lớp 12)
- Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau: Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang? (Toán học - Lớp 12)
- Tìm tập hợp tất cả các giá trị của tham số m để phương trình \({4^x} - m{.2^x} + 2m - 5 = 0\) có hai nghiệm phân biệt. (Toán học - Lớp 12)
- Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA = a\). Tính khoảng cách từ B đến mặt phẳng (SAC). (Toán học - Lớp 12)
- Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c. (Toán học - Lớp 12)
- Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\) (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)