LH Quảng cáo: lazijsc@gmail.com

Hàm số \[y = f(x)\] có đạo hàm \[f'\left( x \right) = \left( {{x^4} - {x^2}} \right){\left( {x + 2} \right)^3},{\rm{ }}\forall x \in \mathbb{R}\]. Số điểm cực trị của hàm số là:

Nguyễn Thị Nhài | Chat Online
07/09 12:53:38 (Toán học - Lớp 12)
6 lượt xem
Hàm số \[y = f(x)\] có đạo hàm \[f'\left( x \right) = \left( {{x^4} - {x^2}} \right){\left( {x + 2} \right)^3},{\rm{ }}\forall x \in \mathbb{R}\]. Số điểm cực trị của hàm số là:
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. 3.
0 %
0 phiếu
B. 2.
0 %
0 phiếu
C. 1.
0 %
0 phiếu
D. 4.
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư