Cho ma trận trực giao
Nguyễn Thị Thương | Chat Online | |
20/12/2024 14:34:57 (Tổng hợp - Đại học) |
9 lượt xem
Cho ma trận trực giao
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. Điều nào sau đây không đúng? 0 % | 0 phiếu |
B. Hệ các véc tơ cột của A là một hệ trực chuẩn 0 % | 0 phiếu |
C. Hệ các véc tơ hàng của A là một hệ trực chuẩn 0 % | 0 phiếu |
D. Định thức của A luôn bằng 1 0 % | 0 phiếu |
E. Tồn tại ma trận nghịch đảo A-1=At 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Tìm điều kiện a,b,c,d để dạng song tuyến tính xác định như sau \[\forall \left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right) \in {R^2},\eta (\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right) = a{x_1},{x_2} + b{x_1}{y_2} + c{x_2}{y_1} + ... (Tổng hợp - Đại học)
- Tìm k để dạng song tuyến tính xác định như sau \[\forall \left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right) \in {R^2},\eta (\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right) = {x_1},{x_2} - 3{x_1}{y_2} - 3{x_2}{y_1} + k{y_1}{y_2}\] là ... (Tổng hợp - Đại học)
- Với giá trị nào của tham số m thì dạng toàn phương Q: R3-> R, \[Q\left( {x,y,z} \right) = - 4{x^2} - {y^2} + 4m{z^2} + 2mxy - 4mxz + 4yz\] xác định âm: (Tổng hợp - Đại học)
- Cho dạng toàn phương Q: R3 -> R có ma trận trong cơ sở chính tắc \[A = \left( {\begin{array}{*{20}{c}}1&m&{ - 1}\\m&1&2\\{ - 1}&2&5\end{array}} \right)\]Với giá trị nào của tham số m thì dạng toàn phương Q , xác định dương: (Tổng hợp - Đại học)
- Với giá trị nào của tham số m thì dạng toàn phương Q: R3 -> R, \[Q\left( {x,y,z} \right) = 2{x^2} + {y^2} + 3{z^2} + 2mxy + 2xz\]xác định dương: (Tổng hợp - Đại học)
- Cho dạng toàn phương Q: R3 -> R có ma trận trong cơ sở chính tắc \[A = \left( {\begin{array}{*{20}{c}}{17}&2&{ - 2}\\{ - 2}&{14}&{ - 4}\\{ - 2}&{ - 4}&{14}\end{array}} \right)\]. Tìm một cơ sở \[\{ {v_1},{v_2},{v_3}\} \]của ... (Tổng hợp - Đại học)
- Cho dạng toàn phương Q: R3 -> R xác định bởi \[Q\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2} + 4xy + 4xz + 2yz\]. Tìm một cơ sở \[\left\{ {v1,v2,v3} \right\}\]của R3 sao cho biểu thức toạ độ của Q trong cơ sở này có dạng ... (Tổng hợp - Đại học)
- Cho dạng toàn phương Q: R4 -> R xác định bởi \[Q\left( {x,y,z,t} \right) = 3{x^2} + 2{y^2} - {z^2} - 2{t^2} + 2xy - 4yz + 2yt\]. Tìm chỉ số quán tính dương p và chỉ số quán tính âm q? (Tổng hợp - Đại học)
- Cho dạng toàn phương Q: R3 -> R xác định bởi .Tìm chỉ số quán tính dương p và chỉ số quán tính âm q? (Tổng hợp - Đại học)
- Cho dạng toàn phương Q: R3 -> R xác định bởi \[(x,y) = 2{x^2} - 6xy + {y^2}\].Tìm ma trận của Q trong cơ sở \[\left\{ {v1 = \left( {1,0} \right),v2 = \left( {1,1} \right)} \right\}\] (Tổng hợp - Đại học)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)