"Bogdan Pishchalnikov" là Vận động viên gắn liền với bộ môn thể thao nào?
Thiên Thần Bé Nhỏ | Chat Online | |
21/07/2020 14:32:04 |
163 lượt xem
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. Tennis 14.29 % | 2 phiếu |
B. Bóng rổ 7.14 % | 1 phiếu |
C. Điền kinh 71.43 % | 10 phiếu |
D. Golf 7.14 % | 1 phiếu |
Tổng cộng: | 14 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- "Söderköping" là tên tỉnh thành, thị trấn của quốc gia nào ở Châu Âu?
- Bài thơ "Mèo hư" là sáng tác của nhà thơ nào?
- "Hart Crag" là tên một ngọn núi thuộc quốc gia nào ở Châu Âu?
- Cầu thủ bóng đá "Joaquim Cardoso Neto" là người quốc gia nào?
- "Sam Hutsby" là Vận động viên gắn liền với bộ môn thể thao nào?
- "Martha Doan" là nhà hóa học người nước nào?
- Cầu thủ bóng đá "Murilo Henrique Pereira Rocha" là người quốc gia nào?
- Nhà văn Tô Hoài là người nước nào?
- Quê hương của họa sĩ "Manuel Acevedo" là đất nước nào?
- Cầu thủ bóng đá "Facundo Sava" là người quốc gia nào?
Trắc nghiệm mới nhất
- Phần I. Đọc - hiểu (6.0 điểm) Đọc kĩ đoạn trích sau và trả lời các câu hỏi bên dưới: “Bơi càng lên mặt ao thấy càng nóng, cá Chuối mẹ bơi mãi, cố tìm hướng vào bờ. Mặt ao sủi bọt, nổi lên từng đám rêu. Rất khó nhận ra phương hướng. Chuối mẹ phải ... (Ngữ văn - Lớp 6)
- Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó? (Toán học - Lớp 9)
- Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu? (Toán học - Lớp 9)
- III. Vận dụng Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là (Toán học - Lớp 9)
- Cho tam giác \[ABC\] nhọn nội tiếp \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng? (Toán học - Lớp 9)
- Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là (Toán học - Lớp 9)
- Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là (Toán học - Lớp 9)
- Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng (Toán học - Lớp 9)
- Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng (Toán học - Lớp 9)