Xét tứ diện O.ABC có OA, OB, OC đôi một vuông góc. Gọi α, β, γ lần lượt là góc giữa các đường thẳng OA, OB, OC với mặt phẳng (ABC). Khi đó, tính giá trị nhỏ nhất của biểu thức sau M= (3+cot2α)(3+cot2β)(3+cot2γ)
Tô Hương Liên | Chat Online | |
29/08 20:51:16 (Toán học - Lớp 12) |
9 lượt xem
Xét tứ diện O.ABC có OA, OB, OC đôi một vuông góc. Gọi α, β, γ lần lượt là góc giữa các đường thẳng OA, OB, OC với mặt phẳng (ABC). Khi đó, tính giá trị nhỏ nhất của biểu thức sau M= (3+cot2α)(3+cot2β)(3+cot2γ)
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. Số khác 0 % | 0 phiếu |
B. 483 0 % | 0 phiếu |
C. 48 0 % | 0 phiếu |
D. 125 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, cạnh bên SA vuông góc với đáy và SA=a. Góc giữa hai mặt phẳng (SBC) và (SAD) bằng: (Toán học - Lớp 12)
- Cho khối chóp tứ giác đều có cạnh đáy bằng a, cạnh bên bằng a2. Thể tích của khối chóp là: (Toán học - Lớp 12)
- Cho hình chóp tam giác đều có cạnh đáy bằng 1 và chiều cao h=3. Diện tích mặt cầu ngoại tiếp hình chóp là: (Toán học - Lớp 12)
- Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông BA=BC=a, cạnh bên AA'=a2, M là trung điểm của BC. Khoảng cách giữa AM và B' C là: (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA=a6. Gọi a là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sinα ta được kết quả là: (Toán học - Lớp 12)
- Cho khối nón có bán kính đáy r=2 chiều cao, h=3. Thể tích của khối nón là (Toán học - Lớp 12)
- Khối lăng trụ có chiều cao h, diện tích đáy bằng B có thể tích là: (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy là hình vuông, cạnh bên SA vuông góc với đáy. Gọi M,N là trung điểm của SA,SB. Mặt phẳng MNCD chia hình chóp đã cho thành hai phần. Tỉ số thể tích hai phần S.MNCD và MNABCD là (Toán học - Lớp 12)
- Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB=AC=a, AA'=a2. Thể tích khối cầu ngoại tiếp hình tứ diện AB’B’C’ là (Toán học - Lớp 12)
- Cần đẽo thanh gỗ hình hộp có đáy là hình vuông thành hình trụ có cùng chiều cao. Tỉ lệ thể tích gỗ cần phải đẽo đi ít nhất (tính gần đúng) là (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)