Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a3, BD=3a. Hình chiếu vuông góc của B trên mặt phẳng (A'B'C'D') trùng với trung điểm A’C’. Gọi α là góc giữa 2 mặt phẳng (ABCD) và (CDD'C'). Thể tích của khối hộp ABCD.A'B'C'D' bằng
Nguyễn Thị Thương | Chat Online | |
29/08/2024 20:51:54 (Toán học - Lớp 12) |
9 lượt xem
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a3, BD=3a. Hình chiếu vuông góc của B trên mặt phẳng (A'B'C'D') trùng với trung điểm A’C’. Gọi α là góc giữa 2 mặt phẳng (ABCD) và (CDD'C'). Thể tích của khối hộp ABCD.A'B'C'D' bằng
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 0 % | 0 phiếu |
B. 0 % | 0 phiếu |
C. 0 % | 0 phiếu |
D. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và BAD⏜=600. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Góc giữa mặt phẳng (SAB) và (ABCD) bằng 600. Khoẳng cách từ điểm B đến mặt phẳng (SCD) bằng (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB=a, BC=a2. Tam giác SAO cân tại S, mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng 600. Tính khoảng cách giữa 2 đường thẳng SB và AC (Toán học - Lớp 12)
- Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho AB=3, AC=4, BC=5 và khoảng cách từ O đến mặt phẳng (ABC) bằng 1. Thể tích của khối cầu (S) bằng (Toán học - Lớp 12)
- Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB=a2. Biết SA vuông góc với (ABC) và SA=a. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng (Toán học - Lớp 12)
- Cho bức tường cao 2m, nằm song song vưới tòa nhà và cách tòa nhà 2m. Người ta muốn chế tạo một chiếc thang bắc từ mặt đất bên ngoài bức tường, gác qua bức tường và chạm vào tòa nhà (xem hình vẽ). Hỏi chiều dài tối đa của thang bằng bao nhiêu mét (Toán học - Lớp 12)
- Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bằng a và chiều cao bằng 2a. Gọi M, N lần lượt là trung điểm của BC và A’C’ (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a và vuông góc với mặt đáy (ABCD). Khoảng cách giữa 2 đường thẳng SC và BD bằng (Toán học - Lớp 12)
- Cho khối lăng trụ ABCD.A’B’C’D’ có thể tích bằng 12, đáy ABCD là hình vuông tâm O. Thể tích khối chóp A’.BCO bằng (Toán học - Lớp 12)
- Thể tích của khối nón có chiều cao bằng 4 và đường sinh bằng 5 (Toán học - Lớp 12)
- Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB=a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABCD biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 450. (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)