Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=1, BC=2, AA'=3. Mặt phẳng (P) thay đổi và luôn đi qua C’, mặt phẳng (P) cắt các tia AB, AD, AA’ lần lượt tại E, F, G (khác A). Tính tổng T=AE+AF+AG sao cho thể tích khối tứ diện AEFG nhỏ nhất.
Trần Đan Phương | Chat Online | |
29/08/2024 20:56:54 (Toán học - Lớp 12) |
10 lượt xem
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=1, BC=2, AA'=3. Mặt phẳng (P) thay đổi và luôn đi qua C’, mặt phẳng (P) cắt các tia AB, AD, AA’ lần lượt tại E, F, G (khác A). Tính tổng T=AE+AF+AG sao cho thể tích khối tứ diện AEFG nhỏ nhất.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 15 0 % | 0 phiếu |
B. 16 0 % | 0 phiếu |
C. 17 0 % | 0 phiếu |
D. 18 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB=AC=a và cạnh BAC⏜=1200, cạnh bên BB'=a, gọi I là trung điểm của CC’. Côsin góc tạo bởi mặt phẳng (ABC) và (AB’I) bằng: (Toán học - Lớp 12)
- Cho (H) là đa giác đều 2n đỉnh nội tiếp đường tròn tâm O (n∈N*, n≥2). Gọi S là tập hợp các tam giác có 3 đỉnh là các đỉnh của đa giác (H). Chọn ngẫu nhiên một tam giác thuộc tập S, biết rằng xác suất chọn một tam giác vuông trong tập S là 329. Tìm n? (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA=a và SA vuông góc với đáy. Tang của góc giữa đường thẳng SO và mặt phẳng (SAB) bằng (Toán học - Lớp 12)
- Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA=OB=OC=a. Khoảng cách giữa hai đường thẳng OA và BC bằng (Toán học - Lớp 12)
- Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Khoảng cách giữa hai đường thẳng AB và A’C’ bằng (Toán học - Lớp 12)
- Cho hình nón có bán kính đáy bằng a và độ dài đường sinh bằng 2a. Diện tích xung quanh của hình nón đó bằng (Toán học - Lớp 12)
- Thể tích V của khối lăng trụ có chiều cao bằng h và diện tích đáy bằng B là (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc BAD⏜=600, SA=SB=SB=a32. Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sinα bằng (Toán học - Lớp 12)
- Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC). Thể tích khối chóp S.ABC bằng (Toán học - Lớp 12)
- Cho khối cầu tâm O, bán kính 6cm. Mặt phẳng (P) cách O một khoảng h cắt khối cầu theo một hình tròn (C). Một khối nón có đỉnh thuộc mặt cầu, đáy là hình tròn (C). Biết khối nón có thể tích lớn nhất, giá trị của h bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)