Một thùng rượu có bán kính đáy là thiết diện vuông góc với trục và cách đều hai đáy có bán kính là 40 cm, chiều cao thùn rượu là 1m (hình vẽ). Biết rằng mặt phẳng chứa trục và cắt mặt xung quanh thùng rượu là các đường parabol, hỏi thể tích của thùng rượu (đon vị lít) là bao nhiêu?
Nguyễn Thị Sen | Chat Online | |
03/09 11:15:57 (Toán học - Lớp 12) |
8 lượt xem
Một thùng rượu có bán kính đáy là thiết diện vuông góc với trục và cách đều hai đáy có bán kính là 40 cm, chiều cao thùn rượu là 1m (hình vẽ). Biết rằng mặt phẳng chứa trục và cắt mặt xung quanh thùng rượu là các đường parabol, hỏi thể tích của thùng rượu (đon vị lít) là bao nhiêu?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 425162 lít 0 % | 0 phiếu |
B. 212581 lít 0 % | 0 phiếu |
C. 212,6 lít 0 % | 0 phiếu |
D. 425,2 lít 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số y = f(x) liên tục trên R, có đồ thị như hình vẽ. Các giá trị của tham số m để phương trình 4m3+m2f2(x)+5=f2(x)+3 có ba nghiệm phân biệt là (Toán học - Lớp 12)
- Trên cánh đồng có 2 con bò được cột vào 2 cây cọc khác nhau. Biết khoảng cách giữa hai cọc là 4 mét, còn 2 sợi dây cột 2 con bò dài 3 mét và 2 mét. Tính phần diện tích mặt cỏ lớn nhất mà 2 con bò có thể ăn chung (lấy giá trị gần đúng nhất). (Toán học - Lớp 12)
- Kết quả (b; c) của việc gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện của lần gieo thứ hai được thay vào phương trình bậc hai x2+bx+c=0. Xác suất để phương ... (Toán học - Lớp 12)
- Gọi S là tập tất cả các giá trị của tham số m để đường thẳng d:y = x + 1 cắt đồ thị hàm số y=4x-m2x-1 tại đúng một điểm. Tích các phần tử của S bằng (Toán học - Lớp 12)
- Cho hàm số y = f(x) liên tục trên R và có đạo hàm f'(x)=-(x-10)(x-11)2(x-12)2019. Khẳng định nào dưới đây đúng ? (Toán học - Lớp 12)
- Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng (P):x - 2y + 2z - 5 = 0. Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u→=(1;b;c) khi đó ... (Toán học - Lớp 12)
- Trong không gian Oxyz, cho d1:x-21=y-1-1=z2,d2:x=2-ty=3z=t. Phương trình mặt phẳng (P) sao cho d1,d2 nằm về hai phía (P) và (P) cách đều d1,d2 (Toán học - Lớp 12)
- Cho hàm số y=x3-34x2-32x có đồ thị như vẽ bên. Tất cả các giá trị thực của tham số m sao cho phương trình 4x3-3x2-6x=m2-6m có đúng ba nghiệm phân biệt là (Toán học - Lớp 12)
- Cho số phức z thỏa mãn điều kiện z-3+4i≤2. Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích bằng (Toán học - Lớp 12)
- Với giá trị thực nào của tham số m thì đường thẳng y = 2x + m cắt đồ thị hàm số y=x+3x+1 tại hai điểm phân biệt M, N sao cho MN ngắn nhất? (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)