Ai là tác giả của bài thơ "Duyên dáng"?
Đặng Khánh Việt | Chat Online | |
11/09/2019 15:56:06 |
182 lượt xem
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. Lê phong trần 28.57 % | 2 phiếu |
B. Nguyễn phong việt 42.86 % | 3 phiếu |
C. Hàn mạc tử 14.29 % | 1 phiếu |
D. Nguyễn du 14.29 % | 1 phiếu |
Tổng cộng: | 7 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Ai là tác giả của bài thơ "Khi đêm về"?
- Ai là tác giả của bài thơ "10 bài thơ và một lời ước muốn"?
- Tác giả của bài thơ "A men no - em" là ai?
- Bài hát "Em nhà ở đâu thế" do ai sáng tác?
- Tác phẩm "Miền Nam" Bùi Giáng viết theo thể loại nào?
- Tác phẩm "Màu xuân" Bùi Giáng viết theo thể loại nào?
- Tác phẩm "Màu trời đó" Bùi Giáng viết theo thể loại nào?
- Tác phẩm "Màu thanh thiên mở" Bùi Giáng viết theo thể loại nào?
- Tác phẩm "Ly tao" Bùi Giáng viết theo thể loại nào?
- Cầu thủ Đoàn Văn Hậu đã chuyển sang thi đấu cho đội bóng nào của Hà Lan ở mùa giải 2019-2020?
Trắc nghiệm mới nhất
- Phần I. Đọc - hiểu (6.0 điểm) Đọc kĩ đoạn trích sau và trả lời các câu hỏi bên dưới: “Bơi càng lên mặt ao thấy càng nóng, cá Chuối mẹ bơi mãi, cố tìm hướng vào bờ. Mặt ao sủi bọt, nổi lên từng đám rêu. Rất khó nhận ra phương hướng. Chuối mẹ phải ... (Ngữ văn - Lớp 6)
- Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó? (Toán học - Lớp 9)
- Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu? (Toán học - Lớp 9)
- III. Vận dụng Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là (Toán học - Lớp 9)
- Cho tam giác \[ABC\] nhọn nội tiếp \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng? (Toán học - Lớp 9)
- Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là (Toán học - Lớp 9)
- Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là (Toán học - Lớp 9)
- Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng (Toán học - Lớp 9)
- Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng (Toán học - Lớp 9)