Tính đạo hàm của hàm số \[f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right)\] tại điểm x=0.
Tô Hương Liên | Chat Online | |
05/09 06:06:36 (Tổng hợp - Lớp 12) |
5 lượt xem
Tính đạo hàm của hàm số \[f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right)\] tại điểm x=0.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[f'\left( 0 \right) = 0.\] 0 % | 0 phiếu |
B. \[f'\left( 0 \right) = - 2018!.\] 0 % | 0 phiếu |
C. \[f'\left( 0 \right) = 2018!.\] 0 % | 0 phiếu |
D. \[f'\left( 0 \right) = 2018.\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số \[f\left( x \right) = \left( {x - 2} \right)\sqrt {{x^2} - 1} \], tìm tập nghiệm S của bất phương trình \[f\prime (x) \le \sqrt {{x^2} - 1} \] (Tổng hợp - Lớp 12)
- Tính đạo hàm của hàm số \[y = \frac{{\sin 2x + 2}}{{\cos 2x + 3}}\] (Tổng hợp - Lớp 12)
- Một chất điểm chuyển động theo phương trình \[S = - \frac{1}{3}{t^3} + 6{t^2}\], trong đó t>0,t được tính bằng giây (s) và S tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t=3 (giây) bằng (Tổng hợp - Lớp 12)
- Cho hàm số y=f(x)) liên trục trên \(\mathbb{R}\) , \[f\prime (x) = 0\;\] có đúng hai nghiệm \[x = 1;x = 2\;\]. Hàm số \[g(x) = f({x^2} + 4x - m)\;\], có bao nhiêu giá trị nguyên của \[m \in [ - 21;21]\;\] để phương trình \[g\prime (x) = 0\;\] có ... (Tổng hợp - Lớp 12)
- Cho hai hàm số f(x) và g(x) có \[f\prime \left( 1 \right) = 3\;\] và g′(1)=1.Đạo hàm của hàm số \[f(x) - g(x)\;\] tại điểm x=1 bằng (Tổng hợp - Lớp 12)
- Cho hàm số y=f(x) có đạo hàm trên \(\mathbb{R}\) Xét các hàm số \[g(x) = f(x) - f(2x)\] và \[h(x) = f(x) - f(4x)\] Biết rằng \[g\prime \left( 1 \right) = 21\;\] và \[g\prime \left( 2 \right) = 1000\]. Tính h′(1) (Tổng hợp - Lớp 12)
- Tính đạo hàm của hàm số \[y = (3x - 1)\sqrt {{x^2} + 1} \] (Tổng hợp - Lớp 12)
- Đạo hàm của hàm số \[y = \tan x - \cot x\] là (Tổng hợp - Lớp 12)
- Khẳng định nào sau đây sai (Tổng hợp - Lớp 12)
- Cho hàm số \[f(x) = {(2x - 1)^3}\]. Giá trị của f′(1) bằng (Tổng hợp - Lớp 12)
Trắc nghiệm mới nhất
- Xét các số tự nhiên gồm 3 chữ số khác nhau được lập từ các số \[0\,;\,\,3\,;\,\,5\,;\,\,7.\] Xác suất để tìm được một số có dạng \(\overline {3xy} \) là (Toán học - Lớp 9)
- III. Vận dụng Chọn ngẫu nhiên một số tự nhiên có 3 chữ số. Gọi \[A\] là biến cố “Số tự nhiên được chọn gồm 3 chữ số \[3\,;\,\,4\,;\,\,5\]”. Xác suất của biến cố \[A\] là (Toán học - Lớp 9)
- Một hộp có hai bi trắng được đánh số 1 và 2 ,viên bi xanh được đánh số 4 và 5 và 2 viên bi đỏ được đánh số từ 6 và 7. Lấy ngẫu nhiên lần lượt hai viên bi từ hộp. Số phần tử của không gian mẫu là (Toán học - Lớp 9)
- Gieo ngẫu nhiên hai con súc sắc cân đối, đồng chất. Xác suất của biến cố “Tổng số chấm của hai con xúc xắc bằng 6” là (Toán học - Lớp 9)
- Có hai hộp thẻ. Hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9. Lần lượt lấy ngẫu nhiên ở mỗi hộp 1 thẻ và viết số tạo thành từ 2 thẻ đó. Không gian mẫu của phép thử có số phần tử là (Toán học - Lớp 9)
- Gieo một đồng xu cân đối và đồng chất ba lần. Xét biến cố \[A:\] “Mặt ngửa xuất hiện ít nhất 1 lần”. Tập hợp mô tả kết quả thuận lợi cho biến cố \[A\] là (Toán học - Lớp 9)
- Một lô hàng có \[1\,\,000\] sản phẩm, trong đó có 50 sản phẩm không đạt yêu cầu. Lấy ngẫu nhiên từ lô hàng đó 1 sản phẩm. Xác suất để sản phẩm lấy ra là sản phẩm tốt là (Toán học - Lớp 9)
- Một xạ thủ bắn vào một tấm bia được chia thành các ô bằng nhau đánh số từ 1 đến 10. Xác suất để xạ thủ bắn được điểm tốt (từ 8 đến 10 điểm) là (Toán học - Lớp 9)
- II. Thông hiểu Lấy ngẫu nhiên hai viên bi từ một thùng có 4 bi xanh, 5 bi đỏ và 6 bi vàng. Số phần tử của không gian mẫu là (Toán học - Lớp 9)
- Bạn An viết lên bảng một số tự nhiên có 2 chữ số và nhỏ hơn 50. Số kết quả thuận lợi của biến cố “Số được viết là số tròn chục” là (Toán học - Lớp 9)