Trong không gian \[Oxyz,\] cho đường thẳng \(d:\frac{3} = \frac{1} = \frac{z}{1}\) và mặt phẳng \(\left( P \right):2x + y - 2z + 2 = 0.\) Phương trình mặt cầu \(\left( S \right)\) có tâm nằm trên đường thẳng \(d\) có bán kính nhỏ nhất tiếp xúc với \(\left( P \right)\) và đi qua điểm \(A\left( {1\,;\,\, - 1\,;\,\,1} \right)\) là

Bạch Tuyết | Chat Online
05/09/2024 06:39:06 (Tổng hợp - Lớp 12)
10 lượt xem

Trong không gian \[Oxyz,\] cho đường thẳng \(d:\frac{3} = \frac{1} = \frac{z}{1}\) và mặt phẳng \(\left( P \right):2x + y - 2z + 2 = 0.\) Phương trình mặt cầu \(\left( S \right)\) có tâm nằm trên đường thẳng \(d\) có bán kính nhỏ nhất tiếp xúc với \(\left( P \right)\) và đi qua điểm \(A\left( {1\,;\,\, - 1\,;\,\,1} \right)\) là

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \({\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 1} \right)^2} = 1.\)
0 %
0 phiếu
B. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 1.\)
0 %
0 phiếu
C. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1.\)
0 %
0 phiếu
D. \({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1.\)
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×