Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a\sqrt 2 \). Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách dd từ D đến mặt phẳng (SBC).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do AD // BC nên \[d\left( {D;\left( {SBC} \right)} \right) = d\left( {A;\left( {SBC} \right)} \right).\]
Gọi K là hình chiếu của A trên SB, suy ra\[AK \bot SB\,\,\,\left( 1 \right)\]
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{BC \bot SA}\\{BC \bot AB}\end{array}} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AK(2)\)
Từ (1) và (2) \[ \Rightarrow AK \bot \left( {SBC} \right)\]
Khi\[d\left( {A;\left( {SBC} \right)} \right) = AK = \frac{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a\sqrt 3 }}{3}.\]
Đáp án cần chọn là: C
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |