LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hàm số \(y = \frac\) có đồ thị \((C)\) và điểm \(A\left( {0\,;\,\,a} \right).\) Hỏi có tất cả bao nhiêu giá trị nguyên của \(a\) trong đoạn \(\left[ { - 2018\,;\,\,2018} \right]\) để từ điểm \(A\) kẻ được hai tiếp tuyến đến \((C)\) sao cho hai tiếp điểm nằm về hai phía của trục hoành?

Cho hàm số \(y = \frac\) có đồ thị \((C)\) và điểm \(A\left( {0\,;\,\,a} \right).\) Hỏi có tất cả bao nhiêu giá trị nguyên của \(a\) trong đoạn \(\left[ { - 2018\,;\,\,2018} \right]\) để từ điểm \(A\) kẻ được hai tiếp tuyến đến \((C)\) sao cho hai tiếp điểm nằm về hai phía của trục hoành?

1 trả lời
Hỏi chi tiết
13
0
0
Tôi yêu Việt Nam
11/09 11:00:54

TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\) Ta có \(y' = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}}.\)

Phương trình tiếp tuyến với đồ thị \((C)\) tại điểm \(M\left( {{x_0}\,;\,\,\frac{{{x_0} + 2}}{{{x_0} - 1}}} \right)\) là

\(y = \frac{{ - 3}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{{x_0} + 2}}{{{x_0} - 1}}.\)

Tiếp tuyến đi qua điểm \(A\left( {0\,;\,\,a} \right)\) nên \(a = \frac{{3{x_0}}}{{{{\left( {{x_0} - 1} \right)}^2}}} + \frac{{\left( {{x_0} + 2} \right)}}{{\left( {{x_0} - 1} \right)}}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} \ne 1}\\{3{x_0} + \left( {{x_0} + 2} \right)\left( {{x_0} - 1} \right) = a{{\left( {{x_0} - 1} \right)}^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} \ne 1}\\{\left( {a - 1} \right)x_0^2 - 2\left( {a + 2} \right){x_0} + a + 2 = 0}\end{array}} \right.} \right.\)

Để từ điểm \(A\) kẻ được 2 tiếp tuyến đến \((C)\) thì \((1)\) có hai nghiệm phân biệt khác 1 nên

\(\left\{ {\begin{array}{*{20}{l}}{a - 1 \ne 0}\\{\Delta ' > 0}\\{\left( {a - 1} \right) - 2\left( {a + 2} \right) + a + 2 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a \ne 1}\\{{{\left( {a + 2} \right)}^2} - \left( {a - 1} \right)\left( {a + 2} \right) > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a \ne 1}\\{a >  - 2}\end{array}\,\,(*).} \right.} \right.} \right.\)

Gọi \({x_1},\,\,{x_2}\) là các nghiệm của phương trình (1).

Theo định lí Viète, ta có \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{{2\left( {a + 2} \right)}}}\\{{x_1}{x_2} = \frac}\end{array}} \right.\)

Hai tiếp điểm nằm về hai phía của trục hoành khi và chỉ khi \(y\left( \right) \cdot y\left( \right) < 0\)

\( \Leftrightarrow \frac{{\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right)}}{{\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right)}} < 0 \Leftrightarrow \frac{{{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4}}{{{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1}} < 0 \Leftrightarrow \frac{{ - 3}} < 0 \Leftrightarrow a >  - \frac{2}{3}{\rm{. }}\)

Kết hợp với điều kiện \((*)\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{a >  - \frac{2}{3}}\\{a \ne 1}\end{array}} \right.\).

Mà \[a \in \left[ { - 2018\,;\,\,2018} \right],\,\,a \in \mathbb{Z} \Rightarrow a \in \left\{ {0\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,2018} \right\}.\]

Vậy có tất cả 2018 giá trị nguyên của \(a\) thoả mãn yêu cầu bài toán.

Đáp án: 2018.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất
Trắc nghiệm Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư