Có bao nhiêu số nguyên dương \[x\] sao cho tồn tại số thực \[y\] lớn hơn 1 thỏa mãn \(\left( {x{y^2} + x - 2y + 4} \right)\log y = \log \left( {\frac{x} - 1} \right)\)?
Đáp án: ……….
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\left( {x{y^2} + x - 2y + 4} \right)\log y = \log \left( {\frac{x} - 1} \right)\)
\[ \Leftrightarrow \left( {x{y^2} + x - 2y + 2 + 2} \right)\log y = \log \frac{x}\]
\[ \Leftrightarrow \left( {x{y^2} + x - 2y + 2} \right)\log y + 2\log y = \log \left( {2y - x + 2} \right) - \log x\]
\[ \Leftrightarrow \left( {x{y^2} + x - 2y + 2} \right)\log y = \log \left( {2y - x + 2} \right) - \left( {\log x + 2\log y} \right)\]
\( \Leftrightarrow \left( {x{y^2} + x - 2y + 2} \right)\log y = \log \left( {2y - x + 2} \right) - \log \left( {x{y^2}} \right)\) (1)
Vì \(y > 1\)nên \(\log y > 0\).
TH1: Nếu \(x{y^2} > 2y - x + 2\) thì \(x{y^2} + x - 2y + 2 > 0 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{VT > 0}\\{VP < 0}\end{array}} \right.\).
TH2: Nếu \(x{y^2} < 2y - x + 2\) thì \(x{y^2} + x - 2y + 2 < 0 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{VT < 0}\\{VP > 0}\end{array}} \right.\).
Do do, từ (1) suy ra: \(x{y^2} = 2y - x + 2 \Leftrightarrow x = \frac{{{y^2} + 1}}\).
Xét hàm \(f\left( y \right) = \frac{{{y^2} + 1}},\,\,y \in \left( {1\,;\,\, + \infty } \right)\). Ta có: \(f'\left( y \right) = \frac{{ - 2{y^2} - 4y + 2}}{{{{\left( {{y^2} + 1} \right)}^2}}} < 0\,,\,\,\forall y \in \left( {1\,;\,\, + \infty } \right)\).
Hàm số \(f\left( y \right)\) nghịch biến trên khoảng \(\left( {1\,;\,\, + \infty } \right)\).
Ta có bảng biến thiên của hàm số \(f\left( y \right) = \frac{{{y^2} + 1}}\):
\[ \Rightarrow x = f\left( y \right) \in \left( {0\,;\,\,2} \right){\rm{.}}\] Vì \[x \in {\mathbb{N}^*}\] nên \[x \in \left\{ 1 \right\}.\]
Vậy có 1 giá trị \[x\] thỏa mãn yêu cầu bài toán.
Đáp án: 1.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |