LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Trên tập hợp các số phức, xét phương trình \(4{z^2} - 2(2m + 1)z + {m^2} = 0\) (\(m\) là tham số thực). Có (1) _________ giá trị của tham số \(m\) để phương trình đó có nghiệm \({z_o}\) thỏa mãn \(\left| \right| = 3\)?

Trên tập hợp các số phức, xét phương trình \(4{z^2} - 2(2m + 1)z + {m^2} = 0\) (\(m\) là tham số thực). Có (1) _________ giá trị của tham số \(m\) để phương trình đó có nghiệm \({z_o}\) thỏa mãn \(\left| \right| = 3\)?

1 trả lời
Hỏi chi tiết
13
0
0
Đặng Bảo Trâm
23/10 15:36:40

Đáp án

Trên tập hợp các số phức, xét phương trình \(4{z^2} - 2(2m + 1)z + {m^2} = 0\) (\(m\) là tham số thực). Có (1)

__ 3 _  giá trị của tham số \(m\) để phương trình đó có nghiệm \({z_o}\) thỏa mãn \(\left| \right| = 3\)? 

 Giải thích

Phương trình \(4{z^2} - 2(2m + 1)z + {m^2} = 0\,\,(1)\) có \({\Delta ^\prime } = 4m + 1\).

+Trường hợp 1. \({\Delta ^\prime } \ge 0 \Leftrightarrow m \ge  - \frac{1}{4}\).

Phương trình (1) có nghiệm \({z_o}\) thỏa mãn \(\left| \right| = 3\) suy ra \({z_o} = 3\) hoặc \({z_o} =  - 3\).

Nếu \({z_o} = 3\) suy ra \(36 - 6(2m + 1) + {m^2} = 0 \Leftrightarrow {m^2} - 12m + 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 6 + \sqrt 6 }\\{m = 6 - \sqrt 6 }\end{array}} \right.\), (chọn).

Nếu \({z_o} =  - 3\) suy ra \(36 + 6(2m + 1) + {m^2} = 0 \Leftrightarrow {m^2} + 12m + 42 = 0\) vô nghiệm.

+ Trường hợp 2. \({\Delta ^\prime } < 0 \Leftrightarrow m <  - \frac{1}{4}\). Khi đó phương trình (1) có hai nghiệm phức \({z_1};{z_2}\) thỏa mãn \({z_o} = {z_1} = \overline \).

Suy ra \(\left| \right| = 3 \Leftrightarrow {z_o}.\overline   = 9 \Leftrightarrow {z_1}.{z_2} = 9 \Leftrightarrow \frac{{{m^2}}}{4} = 9 \Leftrightarrow m =  \pm 6\).

Kết hợp điều kiện \(m <  - \frac{1}{4}\) suy ra \(m =  - 6\). Vậy có 3 giá trị của \(m\) thỏa mãn.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất
Trắc nghiệm Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư