LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho số phức z thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức z bằng (1) _______. (Lấy \(\pi \approx 3,14\) và kết quả viết dưới dạng phân số tối giản).

Cho số phức z thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức z bằng (1) _______. (Lấy \(\pi \approx 3,14\) và kết quả viết dưới dạng phân số tối giản).

1 trả lời
Hỏi chi tiết
10
0
0

Đáp án: “157/100”

Giải thích

Giả sử \(z = x + yi\,\,(x,y \in \mathbb{R})\).

Khi đó\(|z - 1 - 2i| \le 1 \Leftrightarrow |(x - 1) + (y - 2)i| \le 1\)

\( \Leftrightarrow \sqrt {{{(x - 1)}^2} + {{(y - 2)}^2}}  \le 1 \Leftrightarrow {(x - 1)^2} + {(y - 2)^2} \le 1.\)

Và \(|z - 1 + 2i| \ge |z + 3 - 2i|\)

\( \Leftrightarrow \sqrt {{{(x - 1)}^2} + {{(y + 2)}^2}}  \ge \sqrt {{{(x + 3)}^2} + {{(y - 2)}^2}} \)

\( \Leftrightarrow {(x - 1)^2} + {(y + 2)^2} \ge {(x + 3)^2} + {(y - 2)^2} \Leftrightarrow y \ge x + 1.\)

Gọi \((T)\) là nửa mặt phẳng có bờ là đường thẳng \(d:y = x + 1\), không chứa gốc tọa độ \(O(0;0)\). Khi đó tập hợp các điểm biểu diễn số phức \(z\) thỏa mãn đề là nửa hình tròn \((C)\) tâm \(I(1;2)\), bán kính \(R = 1\) và thuộc \((T)\) (phần tô màu trên hình vẽ).

Vì đường thẳng \(d\) đi qua tâm \(I(1;2)\) của hình tròn \((C)\) nên diện tích cần tìm là một nửa diện tích hình tròn \((C)\). Do đó \(S = \frac{\pi }{2} \approx \frac\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất
Trắc nghiệm Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư