Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang vuông tại \[A;\;B\]. Gọi \[G\] là trọng tâm tam giác \[SAB\]. Biết \[SA = a\sqrt 6 \] và vuông góc với mặt đáy \[(ABCD)\],\[AB = BC = \frac{1}{2}AD = a\]. Tính theo \[a\] khoảng cách từ \[G\] đến mặt phẳng \[\left( {SCD} \right)\].

CenaZero♡ | Chat Online
06/09 06:21:18 (Toán học - Lớp 12)
10 lượt xem

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang vuông tại \[A;\;B\]. Gọi \[G\] là trọng tâm tam giác \[SAB\]. Biết \[SA = a\sqrt 6 \] và vuông góc với mặt đáy \[(ABCD)\],\[AB = BC = \frac{1}{2}AD = a\]. Tính theo \[a\] khoảng cách từ \[G\] đến mặt phẳng \[\left( {SCD} \right)\].

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \[\frac{{a\sqrt 6 }}{4}\].
0 %
0 phiếu
B. \[\frac{{a\sqrt 2 }}{4}\].
0 %
0 phiếu
C. \[\frac{{2a\sqrt 6 }}{3}\].
0 %
0 phiếu
D. \[\frac{{3a\sqrt 2 }}{4}\]
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×