Cho hàm số \[f\left( x \right)\] thỏa mãn \[f\left( 0 \right) = 0\] và \[f'\left( x \right) = \left( {{e^x} + {e^{ - x}}} \right)\cos x;\forall x \in \mathbb{R}\]. Khi đó \[\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right)dx} \] bằng

CenaZero♡ | Chat Online
06/09 06:26:09 (Toán học - Lớp 12)
5 lượt xem

Cho hàm số \[f\left( x \right)\] thỏa mãn \[f\left( 0 \right) = 0\] và \[f'\left( x \right) = \left( {{e^x} + {e^{ - x}}} \right)\cos x;\forall x \in \mathbb{R}\]. Khi đó \[\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right)dx} \] bằng

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \[\frac{{{e^{\frac{\pi }{2}}} - {e^{ - \frac{\pi }{2}}}}}{2}\].
0 %
0 phiếu
B. \[\frac{{{e^{\frac{\pi }{2}}} + {e^{ - \frac{\pi }{2}}}}}{2}\].
0 %
0 phiếu
C. \[0\].
0 %
0 phiếu
D. \[1\] .
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×