Cho hàm số \(y = f(x) - {\cos ^2}x\) với \[f\left( x \right)\] là hàm liên tục trên \(\mathbb{R}\). Trong bốn biểu thức dưới đây, biểu thức nào xác định hàm \[f\left( x \right)\] thỏa mãn \[y' = 1\] với mọi \(x \in \mathbb{R}\)?

CenaZero♡ | Chat Online
06/09/2024 17:26:55 (Toán học - Lớp 11)
8 lượt xem
Cho hàm số \(y = f(x) - {\cos ^2}x\) với \[f\left( x \right)\] là hàm liên tục trên \(\mathbb{R}\). Trong bốn biểu thức dưới đây, biểu thức nào xác định hàm \[f\left( x \right)\] thỏa mãn \[y' = 1\] với mọi \(x \in \mathbb{R}\)?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \[x + \frac{1}{2}\cos 2x\].
0 %
0 phiếu
B. \(x - \frac{1}{2}\cos 2x\).
0 %
0 phiếu
C. \[x - \sin 2x\].
0 %
0 phiếu
D. \[x + \;\sin 2x\].
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm mới nhất

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×