Cho hàm số \[y = \frac\] có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Nguyễn Thu Hiền | Chat Online | |
07/09 11:48:31 (Toán học - Lớp 12) |
5 lượt xem
Cho hàm số \[y = \frac\] có đồ thị như hình vẽ.
Khẳng định nào sau đây đúng?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \(ab < 0\); \(ac < 0\). 0 % | 0 phiếu |
B. \(bd < 0\); \(bc > 0\). 0 % | 0 phiếu |
C. \(ad > 0\); \(bd > 0\). 0 % | 0 phiếu |
D. \(ab < 0\); \(ad > 0\). 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Tìm \(a\), \(b\) để hàm số \(y = \frac\) có đồ thị như hình vẽ bên. (Toán học - Lớp 12)
- Đồ thị hàm số \(y = \frac{{\left( {{m^2} + 1} \right)\sqrt {4 - {x^2}} }}\) có bao nhiêu đường tiệm cận? (Toán học - Lớp 12)
- Số đường tiệm cận của đồ thị hàm số \[y = \frac{{\sqrt {2x - {x^2}} + 1}}\]? (Toán học - Lớp 12)
- Cho hàm số \(y = \frac\) (với \(m\) là tham số) thỏa mãn điều kiện \(\mathop {\max y}\limits_{\left[ {1;2} \right]} = 3\). Khẳng định nào sau đây đúng? (Toán học - Lớp 12)
- Biết rằng hàm số \[f\left( x \right) = - x + 2018 - \frac{1}{x}\] đạt giá trị lớn nhất trên khoảng \(\left( {0;4} \right)\) tại \({x_0}\). Tính \(P = {x_0} + 2018\). (Toán học - Lớp 12)
- Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để hàm số y=x4-2mx2+m+1 có giá trị cực tiểu bằng \( - 1\). Tổng các phần tử thuộc \(S\)là: (Toán học - Lớp 12)
- Cho hàm số \[y = \frac{{\left( {m - 1} \right){x^3}}}{3} + \left( {m - 1} \right){x^2} + 4x - 1\]. Hàm số đã cho đạt cực tiểu tại \[{x_1}\], đạt cực đại tại \[{x_2}\] đồng thời \[{x_1} < {x_2}\] khi và chỉ khi: (Toán học - Lớp 12)
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = - {x^2} + 2x + 3,\,\forall x \in \mathbb{R}.\) Hàm số đã cho có bao nhiêu điểm cực trị? (Toán học - Lớp 12)
- Tất cả các giá trị của \(m\) để hàm số \(f(x) = {x^3} - 2m{x^2} + x\) nghịch biến trên khoảng \(\left( {1;2} \right)\)là: (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đạo hàm \[f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right)\]. Hàm số \[y = f\left( x \right)\] đồng biến trên khoảng nào dưới đây? (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Trong các phát biểu sau đây phát biểu nào không là mệnh đề. (Tin học)
- Số xâu khác nhau có thể tạo được từ các chữ cái của từ ORONO là: (Tin học)
- Cho quan hệ R = {(a,b) | a|b}trên tập số nguyên dương. Hỏi R KHÔNG có tính chất nào? (Tin học)
- Câu nào sau đây KHÔNG là một mệnh đề? (Tin học)
- Phương trình x + y + z = 15 có số nghiệm nguyên không âm là: (Tin học)
- Cho đồ thị G có 5 đỉnh có bậc lần lượt là 2, 2, 3, 4, 5. Bậc của đồ thị G là: (Tin học)
- Một cây có ít nhất mấy đỉnh treo? (Tin học)
- Cho đồ thị G có 9 đỉnh có bậc lần lượt là 1, 2, 2, 3, 3, 4, 4, 4, 5. Số cạnh của đồ thị G là: (Tin học)
- Cho đồ thị G có bậc là 10. Số cạnh của đồ thị G là: (Tin học)
- Chọn phát biểu nào sau đây là chính xác nhất: (Tin học)