III. Vận dụng Một người chạy trong thời gian 1 giờ, vận tốc \[v\] (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh \[I\left( {\frac{1}{2};8} \right)\] và trục đối xứng song song với trục tung như hình bên. Tính quãng đường \[s\] người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy?
Phạm Văn Phú | Chat Online | |
16/10 10:59:39 (Toán học - Lớp 12) |
8 lượt xem
III. Vận dụng
Một người chạy trong thời gian 1 giờ, vận tốc \[v\] (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh \[I\left( {\frac{1}{2};8} \right)\] và trục đối xứng song song với trục tung như hình bên. Tính quãng đường \[s\] người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 4 km. 0 % | 0 phiếu |
B. 5 km. 0 % | 0 phiếu |
C. 4,5 km. 0 % | 0 phiếu |
D. 5,5 km. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Tính diện tích hình phẳng giới hạn bởi các đường \[y = {x^2}\], \[y = - \frac{1}{3}x + \frac{4}{3}\] và trục hoành như hình vẽ sau: (Toán học - Lớp 12)
- Cho hình phẳng (H) giới hạn bởi các đường \[y = {x^2} - 2x\], trục hoành, trục tung và đường thẳng \[x = 1.\] Tính thể tích V của khối tròn xoay khi quay (H) quanh trục \[Ox.\] (Toán học - Lớp 12)
- Cho hình (H) giới hạn bởi các đường \[y = {x^2},x = 1\] và trục hoành. Quay hình (H) quanh trục \[Ox\] ta được khối tròn xoay có thể tích là (Toán học - Lớp 12)
- Cho hình phẳng D giới hạn bởi đường cong \[y = \sqrt {2 + \cos x} \], trục hoành và các đường thẳng \[x = 0,x = \frac{\pi }{2}.\] Khối tròn xoay tạo thành khi D quay quanh trục hoành có thể tích V bằng: (Toán học - Lớp 12)
- Cho hình phẳng D giới hạn bởi đường cong \[y = {e^x}\], trục hoành và các đường thẳng \[x = 0,x = 1\]. Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng (Toán học - Lớp 12)
- Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = \ln x,{\rm{ }}y = 1\] và hai đường thẳng \[x = 1,x = e\] bằng (Toán học - Lớp 12)
- Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = {x^3} - 6x,y = {x^2}\] (phần tô đậm trong hình sau) bằng: (Toán học - Lớp 12)
- Cho hình phẳng D giới hạn bởi đường cong \[y = {x^2} + 1\], trục hoành và các đường thẳng \[x = 0,x = 3\]. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng (Toán học - Lớp 12)
- Tính diện tích hình phẳng giới hạn bởi các đường \[y = {x^2} + 1,{\rm{ }}x = - 1,{\rm{ }}x = 2\] và trục hoành. (Toán học - Lớp 12)
- II. Thông hiểu Diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = {\left( {x - 2} \right)^2} - 1\], trục hoành và hai đường thẳng \[x = 1,x = 2\] bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Hormone thể vàng tiết ra gồm (Sinh học - Lớp 11)
- Trong các các biện pháp tránh thai, nữ vị thành niên không nên sử dụng biện pháp (Sinh học - Lớp 11)
- Nhà quản trị CSDL cần có kỹ năng nào để phân tích dữ liệu? (Tin học - Lớp 11)
- Yếu tố môi trường tham gia điều hoà quá trình sinh sản bằng cách nào? (Sinh học - Lớp 11)
- Phát biểu nào không đúng khi nói về quá trình sinh trứng? (Sinh học - Lớp 11)
- Kiến thức về hệ điều hành nào là cần thiết cho nhà quản trị CSDL? (Tin học - Lớp 11)
- Nhiệm vụ chính của nhà quản trị CSDL là gì? (Tin học - Lớp 11)
- Testosteron kích thích (Sinh học - Lớp 11)
- Đẻ con (thai sinh) là quá trình (Sinh học - Lớp 11)
- Read the following passage and do as directed. Unmanned aircraft systems, commonly known as drones, are becoming a game-changer in modern logistics. They’re being used to deliver everything from medicine and food to groceries and homecare ... (Tiếng Anh - Lớp 9)