Cho hình chóp S.ABCD có đáy là hình vuông cạnh 8 , mặt bên SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \(B\) đến mặt phẳng \((SAC)\) là \(\frac{{a\sqrt b }}{c}\) (phân số tối giản với \(c > 0)\). Tính \(a + {b^2} - {c^3}\).

Tôi yêu Việt Nam | Chat Online
23/10 15:33:39 (Tổng hợp - Lớp 12)
51 lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 8 , mặt bên SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \(B\) đến mặt phẳng \((SAC)\) là \(\frac{{a\sqrt b }}{c}\) (phân số tối giản với \(c > 0)\). Tính \(a + {b^2} - {c^3}\).
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. −485.
0 %
0 phiếu
B. −214.
6.67 %
1 phiếu
C. 106.
14 phiếu (93.33%)
D. 203.
0 %
0 phiếu
Tổng cộng:
15 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Trắc nghiệm mới nhất

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư