Cho tứ diện đều ABCD cạnh bằng a. Diện tích xung quanh Sxq của hình trụ có đáy là đường tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện ABCD là
Tôi yêu Việt Nam | Chat Online | |
29/08 20:59:30 (Toán học - Lớp 11) |
12 lượt xem
Cho tứ diện đều ABCD cạnh bằng a. Diện tích xung quanh Sxq của hình trụ có đáy là đường tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện ABCD là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 0 % | 0 phiếu |
B. 0 % | 0 phiếu |
C. 0 % | 0 phiếu |
D. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho tứ diện ABCD có AB = CD = 2a. Gọi M, N lần lượt là trung điểm của BC, AD và MN = a3. Tính góc tạo bởi hai đường thẳng AB và CD (Toán học - Lớp 11)
- Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (DBC) và DBC = 900. Khi quay các cạnh của tứ diện xung quanh trục là cạnh AB, có bao nhiêu hình nón được tạo thành? (Toán học - Lớp 11)
- Cho hình chóp S.ABC có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC), (SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 600. Tính khoảng cách h từ A tới mặt phẳng (SBC) theo a (Toán học - Lớp 11)
- Cho hình chóp S.ABC có SA = a, SB + SC = m (m >2a). BSC= CSA = ASB = 60º và vuông tại A. Tính thể tích chóp S.ABC theo a và m. (Toán học - Lớp 11)
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy (ABCD) và SA = a. Điểm M thuộc cạnh SA sao cho SMSK = k. Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau (Toán học - Lớp 11)
- Cho tam giác ABC có AB = 3a, đường cao CH = a và AH = a. Trên các đường thẳng vuông góc với mặt phẳng (ABC) tại A, B, C về cùng một phía của mặt phẳng (ABC) lấy các điểm A’, B’, C’sao cho AA’ = 3a, BB’ = 3a, CC’ = a. Tính diện tích tam giác A’B’C’. (Toán học - Lớp 11)
- Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a. Hình chiếu vuông góc của A trên mặt phẳng (ABCD) là trung điểm H của AB. Diện tích tam giác SAB bằng a2. Thể tích V của khối chóp S.HCD là (Toán học - Lớp 11)
- Cho hình lăng trụ tam giác đều ABC.A’B’C’có cạnh đáy bằng 2a, khoảng cách từ A đến mặt phẳng (A’BC) bằng a62. Thể tích của khối lăng trụ đã cho bằng (Toán học - Lớp 11)
- Cho khối trụ có chiều cao h = 3 và diện tích toàn phần bằng 20π. Khi đó chu vi đáy của khối trụ là (Toán học - Lớp 11)
- Bán kính của mặt cầu ngoại tiếp tứ diện đều cạnh a là (Toán học - Lớp 11)
Trắc nghiệm mới nhất
- Trong các phát biểu sau đây phát biểu nào không là mệnh đề. (Tin học)
- Số xâu khác nhau có thể tạo được từ các chữ cái của từ ORONO là: (Tin học)
- Cho quan hệ R = {(a,b) | a|b}trên tập số nguyên dương. Hỏi R KHÔNG có tính chất nào? (Tin học)
- Câu nào sau đây KHÔNG là một mệnh đề? (Tin học)
- Phương trình x + y + z = 15 có số nghiệm nguyên không âm là: (Tin học)
- Cho đồ thị G có 5 đỉnh có bậc lần lượt là 2, 2, 3, 4, 5. Bậc của đồ thị G là: (Tin học)
- Một cây có ít nhất mấy đỉnh treo? (Tin học)
- Cho đồ thị G có 9 đỉnh có bậc lần lượt là 1, 2, 2, 3, 3, 4, 4, 4, 5. Số cạnh của đồ thị G là: (Tin học)
- Cho đồ thị G có bậc là 10. Số cạnh của đồ thị G là: (Tin học)
- Chọn phát biểu nào sau đây là chính xác nhất: (Tin học)