Họ nguyên hàm của hàm số f(x)=x-sin2x là
Bạch Tuyết | Chat Online | |
30/08 07:43:39 (Toán học - Lớp 12) |
4 lượt xem
Họ nguyên hàm của hàm số f(x)=x-sin2x là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 0 % | 0 phiếu |
B. 0 % | 0 phiếu |
C. 0 % | 0 phiếu |
D. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x=0; x=π Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x (0≤x≤π) là một tam giác vuông cân có cạnh huyền bằng sinx+2 (Toán học - Lớp 12)
- Tính thể tích vật thể tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đường elip có phương trình x29+y24=1 quay xung quanh trục Ox. (Toán học - Lớp 12)
- Cho F(x)=x4-2x2+1 là một nguyên hàm của hàm số f'(x)-4x. Hàm số y=f(x) có tất cả bao nhiêu điểm cực trị? (Toán học - Lớp 12)
- Hình phẳng giới hạn bởi đồ thị hàm số y=f(x) và trục hoành gồm hai phần, phần nằm phía trên trục hoành có diện tích S1 = 83 và phần nằm phía dưới trục hoành có diện tích S2 = 512(tham khảo hình vẽ bên). Tính I=∫-10f(3x+1)dx. (Toán học - Lớp 12)
- Một nguyên hàm của hàm số f(x)=2x là (Toán học - Lớp 12)
- Cho hàm số y=f(x) có đạo hàm liên tục trên [1;4], biết f(4)=3, f(1)=1 . Tính ∫142f'(x)dx. (Toán học - Lớp 12)
- Tích phân ∫12xlnxdxx2+12dx = aln2 + bln3 + cln5 (với a,b,c là các số hữu tỉ). Tính tổng a+b+c (Toán học - Lớp 12)
- Gọi D là hình phẳng giới hạn bởi đồ thị (C) của hàm số y=x4-2x2+1 tiếp tuyến D của (C) tại điểm có hoành độ x = 2 và trục hoành. Quay D xung quanh trục hoành tạo thành một khối tròn xoay có thể tích V được tính theo công thức (Toán học - Lớp 12)
- Tìm nguyên hàm F(x) của hàm số f(x)=3+cos4πx4, F(4)=2 (Toán học - Lớp 12)
- Cho hàm số y=f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành và hai đường thẳng x=a;x=b (a,b)Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)