Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M là trung điểm của cạnh bên SC. Mặt phẳng (P) qua AM và song song với BD lần lượt cắt các cạnh bên SB, SD tại N, Q. Đặt t=VS.ANMQVS.ABCD. Tính t.
Nguyễn Thanh Thảo | Chat Online | |
30/08 07:50:45 (Toán học - Lớp 12) |
4 lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M là trung điểm của cạnh bên SC. Mặt phẳng (P) qua AM và song song với BD lần lượt cắt các cạnh bên SB, SD tại N, Q. Đặt t=VS.ANMQVS.ABCD. Tính t.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 0 % | 0 phiếu |
B. 0 % | 0 phiếu |
C. 0 % | 0 phiếu |
D. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho tứ diện đều ABCD, gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Gọi α là số đo của góc giữa hai đường thẳng AN, CM. Khi đó cosα bằng (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, AD=3a, BC=CD=4a; cạnh bên SA vuông góc với đáy và SA=a3. Gọi M là điểm nằm trên cạnh AD sao cho AM=a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó ... (Toán học - Lớp 12)
- Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và góc giữa một mặt bên và đáy bằng 600, diện tích xung quanh của hình nón đỉnh S và đáy là hình tròn nối tiếp tam giác ABC bằng (Toán học - Lớp 12)
- Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, AA'=2a. Một khối trục có hai đáy là hai hình tròn lần lượt nội tiếp tam giác ABC và tam giác A’B’C’. Tính thể tích V của khối trục đó. (Toán học - Lớp 12)
- Gọi n là số mặt phẳng đối xứng của hình lập phương. Tìm n. (Toán học - Lớp 12)
- Cho tứ diện đều ABCD. Gọi M, N. P lần lượt là trung điểm của các cạnh AB, BC. AD và G là trọng tâm của tam giác BCD. Gọi α là số đo của góc giữa hai đường thẳng MG và NP. Khi đó cosα bằng (Toán học - Lớp 12)
- Cho tứ diện ABCD có AB=a, AC=a2, AD=a3 các tam giác ABC,ACD, ABD là các tam giác vuông tại đỉnh A. Tính khoảng cách d từ điểm A đến mặt phẳng (BCD). (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết rằng, góc giữa mặt phẳng (SCD) và mặt phẳng đáy bằng 600. Tính thể tích V của khối chóp S.ABCD. (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB. SC và P là điểm trên cạnh SD sao cho SPSD=34. Mặt phẳng (MNP) cắt cạnh SB tại điểm Q. Tỉ số SQSB bằng (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, sạnh bên SA vuông góc với mặt đáy. Gọi E là trung điểm của cạnh CD. Biết thể tích khối chóp S.ABCD bằng a33. Khoảng cách từ điểm A đến mặt phẳng (SBE) bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)