Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M là trung điểm của cạnh bên SC. Mặt phẳng (P) qua AM và song song với BD lần lượt cắt các cạnh bên SB, SD tại N, Q. Đặt t=VS.ANMQVS.ABCD. Tính t.
Nguyễn Thanh Thảo | Chat Online | |
30/08/2024 07:50:45 (Toán học - Lớp 12) |
9 lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M là trung điểm của cạnh bên SC. Mặt phẳng (P) qua AM và song song với BD lần lượt cắt các cạnh bên SB, SD tại N, Q. Đặt t=VS.ANMQVS.ABCD. Tính t.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 0 % | 0 phiếu |
B. 0 % | 0 phiếu |
C. 0 % | 0 phiếu |
D. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho tứ diện đều ABCD, gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Gọi α là số đo của góc giữa hai đường thẳng AN, CM. Khi đó cosα bằng (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, AD=3a, BC=CD=4a; cạnh bên SA vuông góc với đáy và SA=a3. Gọi M là điểm nằm trên cạnh AD sao cho AM=a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó ... (Toán học - Lớp 12)
- Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và góc giữa một mặt bên và đáy bằng 600, diện tích xung quanh của hình nón đỉnh S và đáy là hình tròn nối tiếp tam giác ABC bằng (Toán học - Lớp 12)
- Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, AA'=2a. Một khối trục có hai đáy là hai hình tròn lần lượt nội tiếp tam giác ABC và tam giác A’B’C’. Tính thể tích V của khối trục đó. (Toán học - Lớp 12)
- Gọi n là số mặt phẳng đối xứng của hình lập phương. Tìm n. (Toán học - Lớp 12)
- Cho tứ diện đều ABCD. Gọi M, N. P lần lượt là trung điểm của các cạnh AB, BC. AD và G là trọng tâm của tam giác BCD. Gọi α là số đo của góc giữa hai đường thẳng MG và NP. Khi đó cosα bằng (Toán học - Lớp 12)
- Cho tứ diện ABCD có AB=a, AC=a2, AD=a3 các tam giác ABC,ACD, ABD là các tam giác vuông tại đỉnh A. Tính khoảng cách d từ điểm A đến mặt phẳng (BCD). (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết rằng, góc giữa mặt phẳng (SCD) và mặt phẳng đáy bằng 600. Tính thể tích V của khối chóp S.ABCD. (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB. SC và P là điểm trên cạnh SD sao cho SPSD=34. Mặt phẳng (MNP) cắt cạnh SB tại điểm Q. Tỉ số SQSB bằng (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, sạnh bên SA vuông góc với mặt đáy. Gọi E là trung điểm của cạnh CD. Biết thể tích khối chóp S.ABCD bằng a33. Khoảng cách từ điểm A đến mặt phẳng (SBE) bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)