Cho n là số nguyên dương thỏa mãn An2-3Cnn-1=11n. Xét khai triển Px=x-2n. Hệ số chứa x10 trong khai triển là:
Phạm Văn Bắc | Chat Online | |
01/09 14:32:55 (Toán học - Lớp 12) |
9 lượt xem
Cho n là số nguyên dương thỏa mãn An2-3Cnn-1=11n. Xét khai triển Px=x-2n. Hệ số chứa x10 trong khai triển là:
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 384384 0 % | 0 phiếu |
B. -3075072 0 % | 0 phiếu |
C. -96096 0 % | 0 phiếu |
D. 3075072 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Một trường THPT có 18 học sinh giỏi toàn diện, trong đó có 11 học sinh khối 12, 7 học sinh khối 11. Chọn ngẫu nhiên 6 học sinh từ 18 học sinh trên để đi dự trại hè. Xác suất để mỗi khối có ít nhất 1 học sinh được chọn là (Toán học - Lớp 12)
- Gọi z1,z2 là hai nghiệm của phương trình 3z2-z+4=0. Khi đó P=z1z2+z2z1 bằng (Toán học - Lớp 12)
- Trong không gian Oxyz, cho tam giác ABC với A(-1;0;2), B(1;2;-1), C(3;1;2). Mặt phẳng (P) đi qua trọng tâm của tam giác ABC và vuông góc với đường thẳng AB là: (Toán học - Lớp 12)
- Cho hàm sốf (x) có đạo hàm trên [1;4] và f(1), f(4) = 10.Giá trị của I=∫14f'(x)dx là (Toán học - Lớp 12)
- Cho 0 < a < 1. Khẳng định nào đúng? (Toán học - Lớp 12)
- Cho hình chóp S.ABC đường cao SA = 2a tam giác ABC vuông tại C có AB = 2a, góc CAB = 300. Khi đó cosin của góc giữa đường thẳng SC và mặt phẳng (ABC) là: (Toán học - Lớp 12)
- Cho đồ thị hàm số y=ax+12x-ba,b∈R; ab≠-2. Giao điểm của hai đường tiệm cận là I2;-1. Giá trị của a, b là: (Toán học - Lớp 12)
- Gọi M và m lần lượt là GTLN và GTNN của hàm số y=2x3+3x2-12x+2 trên đoạn [-1;2]. Tỉ số Mm bằng (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a; SA vuông góc với đáy ABCD, SC hợp với đáy một góc α và tanα=105. Khi đó, khoảng cách từ điểm B đến mặt phẳng (SCD) là: (Toán học - Lớp 12)
- Phương trình x3-12x+m-2=0 có ba nghiệm phân biệt với m thuộc khoảng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)