Tìm M∈C:y=2x+1x-1 sao cho khoảng cách từ điểm M đến tiệm cận đứng bằng hai lần khoảng các từ điểm M đến tiệm cận ngang
Trần Đan Phương | Chat Online | |
03/09 21:53:59 (Toán học - Lớp 12) |
8 lượt xem
Tìm M∈C:y=2x+1x-1 sao cho khoảng cách từ điểm M đến tiệm cận đứng bằng hai lần khoảng các từ điểm M đến tiệm cận ngang
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. M ( 2;5 ), M ( -2;1 ) 0 % | 0 phiếu |
B. M ( 2;5 ), M ( 0;-1 ) 0 % | 0 phiếu |
C. M ( 4;3 ), M ( -2;1 ) 0 % | 0 phiếu |
D. M ( 4;3 ), M ( 0;-1 ) 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho x, y là hai số thực dương thay đổi và thỏa mãn điều kiện x + 2y - xy = 0. Tìm giá trị nhỏ nhất của biểu thức P=x24+8y+y21+x (Toán học - Lớp 12)
- Khẳng định nào sau đây là sai? (Toán học - Lớp 12)
- Cho hàm số y=ax3+bx2+cx+d đạt cực đại tại x = -2 với giá trị cực đại là 64; đạt cực tiểu tại x = 3 với giá trị cực tiểu là -61. Khi đó giá trị của a + b + c + d bằng (Toán học - Lớp 12)
- Tìm giá trị m để hàm số y=13x3-mx2+m2-1x+1+3x có cực đại, cực tiểu sao cho yCD+yCT>2 (Toán học - Lớp 12)
- Tìm giá trị của m để hàm số y=x2-2mx+3m22m-xnghịch biến trên khoảng 1;+∞ (Toán học - Lớp 12)
- Xác định m để hàm số y=x4+2m-1x2+m-5 có hai khoảng đồng biến dạng ( a;b ) và c;+∞ với b < c (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA = x . Giả sử SA⊥ABC và góc giữa hai mặt (SBC) và (SCD) bằng 120o. Tìm x (Toán học - Lớp 12)
- Tính giá trị gần đúng với 3 chữ số thập phân của ln(0,004) (Toán học - Lớp 12)
- Tìm số điểm gián đoạn của hàm số y=x+4x4-10x2+9 (Toán học - Lớp 12)
- Tính giới hạn của hàm số limx→0x+83-x+4x (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)