Tính nguyên hàm \[I = \int {\frac{{{x^2} - 1}}{\rm{d}}x} \]
Nguyễn Thu Hiền | Chat Online | |
05/09/2024 12:02:07 (Toán học - Lớp 12) |
7 lượt xem
Tính nguyên hàm \[I = \int {\frac{{{x^2} - 1}}{\rm{d}}x} \]
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[I = \frac{3}{2}\ln \left| {\frac} \right| + C.\] 0 % | 0 phiếu |
B. \[I = \frac{3}{2}\ln \left| {\frac} \right| + C.\] 0 % | 0 phiếu |
C. \[I = \ln \left| {\frac{{{{\left( {x + 1} \right)}^3}}}{{{{\left( {x - 1} \right)}^2}}}} \right| + C.\] 0 % | 0 phiếu |
D. \[I = \ln \left| {\frac{{{{\left( {x + 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^3}}}} \right| + C.\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số \[f\left( x \right),\] có bảng xét dấu \[f'\left( x \right)\] như sau Hàm số \[y = f\left( {{x^2} - 2x} \right)\] đồng biến trên khoảng nào dưới dây (Toán học - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \[A(2;1;0),B(3;0;2),C(4;3; - 4)\]. Viết phương trình đường phân giác trong góc A. (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] là hàm số liên tục trên và \[\int\limits_0^1 {f\left( x \right){\mkern 1mu} {\rm{d}}x} = 1,\int\limits_1^4 {\frac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x} = 6\]. Tính giá trị của tích phân \[I = ... (Toán học - Lớp 12)
- Cho số phức \[z = a + bi\] với \[a,b \in \mathbb{R}\] thỏa mãn \[\left( {1 + 3i} \right)z + \left( {2 + i} \right)\bar z = - 2 + 4i.\] Tính \[P = ab.\] (Toán học - Lớp 12)
- Cho hàm số \[f\left( x \right)\] có đạo hàm là \[f'\left( x \right) = x{\left( {x + 1} \right)^2}{\left( {x - 2} \right)^4}\] với mọi \[x \in \mathbb{R}\]. Số điểm cực trị của hàm số f là: (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ Số nghiệm của phương trình \[{f^2}\left( x \right) - 2f\left( x \right) = 0\] là (Toán học - Lớp 12)
- Cho \[{\log _a}x = 5,\;{\log _b}x = - 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{{{a^2}}}{b}}}x\] (Toán học - Lớp 12)
- Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng (Toán học - Lớp 12)
- Hình hộp chữ nhật \[ABCD.A'B'C'D'\] có \[AB = a,\;AD = 3a\] và \[AC' = 5a\] thì có thể tích là (Toán học - Lớp 12)
- Hàm số \[y = {\log _3}\left( {{x^2} - 4x + 3} \right)\] đồng biến trên khoảng nào sau đây (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)